LovenOO commited on
Commit
8f71520
·
1 Parent(s): 3f33b8f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.8740
24
- - Precision: 0.8582
25
- - Recall: 0.8441
26
- - F1: 0.8491
27
- - Accuracy: 0.8896
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.8195 | 1.0 | 514 | 0.5442 | 0.7965 | 0.8464 | 0.8071 | 0.8638 |
59
- | 0.4249 | 2.0 | 1028 | 0.6446 | 0.8539 | 0.8236 | 0.8306 | 0.8769 |
60
- | 0.3014 | 3.0 | 1542 | 0.6167 | 0.8484 | 0.8472 | 0.8463 | 0.8818 |
61
- | 0.2268 | 4.0 | 2056 | 0.6262 | 0.8493 | 0.8594 | 0.8523 | 0.8896 |
62
- | 0.1549 | 5.0 | 2570 | 0.6261 | 0.8443 | 0.8585 | 0.8501 | 0.8862 |
63
- | 0.124 | 6.0 | 3084 | 0.8133 | 0.8566 | 0.8454 | 0.8503 | 0.8876 |
64
- | 0.1057 | 7.0 | 3598 | 0.7241 | 0.8645 | 0.8596 | 0.8584 | 0.8925 |
65
- | 0.0955 | 8.0 | 4112 | 0.8449 | 0.8532 | 0.8334 | 0.8421 | 0.8862 |
66
- | 0.0744 | 9.0 | 4626 | 0.8140 | 0.8544 | 0.8536 | 0.8527 | 0.8901 |
67
- | 0.0493 | 10.0 | 5140 | 0.8740 | 0.8582 | 0.8441 | 0.8491 | 0.8896 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.8909
24
+ - Precision: 0.8485
25
+ - Recall: 0.8467
26
+ - F1: 0.8467
27
+ - Accuracy: 0.8857
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.9219 | 1.0 | 514 | 0.5751 | 0.8031 | 0.8211 | 0.8091 | 0.8658 |
59
+ | 0.4593 | 2.0 | 1028 | 0.5435 | 0.8461 | 0.8372 | 0.8333 | 0.8789 |
60
+ | 0.2853 | 3.0 | 1542 | 0.6109 | 0.8362 | 0.8385 | 0.8347 | 0.8794 |
61
+ | 0.2159 | 4.0 | 2056 | 0.6320 | 0.8349 | 0.8681 | 0.8492 | 0.8847 |
62
+ | 0.1531 | 5.0 | 2570 | 0.6988 | 0.8564 | 0.8532 | 0.8536 | 0.8901 |
63
+ | 0.1223 | 6.0 | 3084 | 0.8081 | 0.8447 | 0.8476 | 0.8456 | 0.8833 |
64
+ | 0.1073 | 7.0 | 3598 | 0.7644 | 0.8366 | 0.8501 | 0.8425 | 0.8833 |
65
+ | 0.0958 | 8.0 | 4112 | 0.8606 | 0.8522 | 0.8468 | 0.8488 | 0.8847 |
66
+ | 0.0769 | 9.0 | 4626 | 0.8468 | 0.8475 | 0.8482 | 0.8472 | 0.8857 |
67
+ | 0.061 | 10.0 | 5140 | 0.8909 | 0.8485 | 0.8467 | 0.8467 | 0.8857 |
68
 
69
 
70
  ### Framework versions