update model card README.md
Browse files
README.md
CHANGED
@@ -1,26 +1,30 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
tags:
|
4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
5 |
model-index:
|
6 |
-
- name:
|
7 |
results: []
|
8 |
---
|
9 |
|
10 |
-
<!-- This model card has been generated automatically according to the information
|
11 |
-
probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
-
#
|
14 |
|
15 |
-
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
-
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
- Train Accuracy: 0.8581
|
23 |
-
- Epoch: 4
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -39,23 +43,33 @@ More information needed
|
|
39 |
### Training hyperparameters
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
-
-
|
43 |
-
-
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
-
|
|
48 |
-
|
49 |
-
|
|
50 |
-
| 0.
|
51 |
-
| 0.
|
52 |
-
| 0.
|
53 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
### Framework versions
|
57 |
|
58 |
-
- Transformers 4.
|
59 |
-
-
|
60 |
-
- Datasets 2.14.
|
61 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
model-index:
|
12 |
+
- name: distilBERT_without_preprocessing_grid_search
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
+
# distilBERT_without_preprocessing_grid_search
|
20 |
|
21 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8740
|
24 |
+
- Precision: 0.8582
|
25 |
+
- Recall: 0.8441
|
26 |
+
- F1: 0.8491
|
27 |
+
- Accuracy: 0.8896
|
|
|
|
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.8195 | 1.0 | 514 | 0.5442 | 0.7965 | 0.8464 | 0.8071 | 0.8638 |
|
59 |
+
| 0.4249 | 2.0 | 1028 | 0.6446 | 0.8539 | 0.8236 | 0.8306 | 0.8769 |
|
60 |
+
| 0.3014 | 3.0 | 1542 | 0.6167 | 0.8484 | 0.8472 | 0.8463 | 0.8818 |
|
61 |
+
| 0.2268 | 4.0 | 2056 | 0.6262 | 0.8493 | 0.8594 | 0.8523 | 0.8896 |
|
62 |
+
| 0.1549 | 5.0 | 2570 | 0.6261 | 0.8443 | 0.8585 | 0.8501 | 0.8862 |
|
63 |
+
| 0.124 | 6.0 | 3084 | 0.8133 | 0.8566 | 0.8454 | 0.8503 | 0.8876 |
|
64 |
+
| 0.1057 | 7.0 | 3598 | 0.7241 | 0.8645 | 0.8596 | 0.8584 | 0.8925 |
|
65 |
+
| 0.0955 | 8.0 | 4112 | 0.8449 | 0.8532 | 0.8334 | 0.8421 | 0.8862 |
|
66 |
+
| 0.0744 | 9.0 | 4626 | 0.8140 | 0.8544 | 0.8536 | 0.8527 | 0.8901 |
|
67 |
+
| 0.0493 | 10.0 | 5140 | 0.8740 | 0.8582 | 0.8441 | 0.8491 | 0.8896 |
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
+
- Transformers 4.31.0
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.14.4
|
75 |
+
- Tokenizers 0.13.3
|