File size: 2,144 Bytes
038fc3a c6a5842 038fc3a 266c1cb 038fc3a 266c1cb d2a3452 d996374 c6a5842 038fc3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: LovenOO/distilBERT_without_preprocessing_grid_search
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# LovenOO/distilBERT_without_preprocessing_grid_search
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3005
- Validation Loss: 0.5042
- Train Precision: 0.6594
- Train Recall: 0.6486
- Train F1: 0.6531
- Train Accuracy: 0.8610
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 1.2437 | 0.6349 | 0.5675 | 0.5420 | 0.5499 | 0.8343 | 0 |
| 0.5456 | 0.5544 | 0.6316 | 0.6172 | 0.6214 | 0.8435 | 1 |
| 0.3904 | 0.5303 | 0.6384 | 0.6191 | 0.6239 | 0.8523 | 2 |
| 0.3005 | 0.5042 | 0.6594 | 0.6486 | 0.6531 | 0.8610 | 3 |
### Framework versions
- Transformers 4.24.0
- TensorFlow 2.13.0
- Datasets 2.14.2
- Tokenizers 0.11.0
|