--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_mergeddata_with_preprocessing_grid_search results: [] --- # distilBERT_mergeddata_with_preprocessing_grid_search This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1742 - Precision: 0.9650 - Recall: 0.9650 - F1: 0.9648 - Accuracy: 0.965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 225 | 0.2068 | 0.9550 | 0.9536 | 0.9537 | 0.9544 | | No log | 2.0 | 450 | 0.1497 | 0.9583 | 0.9585 | 0.9582 | 0.9583 | | 0.445 | 3.0 | 675 | 0.1408 | 0.9628 | 0.9631 | 0.9627 | 0.9628 | | 0.445 | 4.0 | 900 | 0.1484 | 0.9630 | 0.9630 | 0.9626 | 0.9628 | | 0.0585 | 5.0 | 1125 | 0.1487 | 0.9675 | 0.9680 | 0.9676 | 0.9678 | | 0.0585 | 6.0 | 1350 | 0.1538 | 0.9665 | 0.9670 | 0.9665 | 0.9667 | | 0.0242 | 7.0 | 1575 | 0.1666 | 0.9644 | 0.9645 | 0.9642 | 0.9644 | | 0.0242 | 8.0 | 1800 | 0.1709 | 0.9672 | 0.9673 | 0.9671 | 0.9672 | | 0.0111 | 9.0 | 2025 | 0.1707 | 0.9670 | 0.9672 | 0.9670 | 0.9672 | | 0.0111 | 10.0 | 2250 | 0.1742 | 0.9650 | 0.9650 | 0.9648 | 0.965 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3