LovenOO commited on
Commit
02a4474
1 Parent(s): df9ef7e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.2838
24
- - Precision: 0.9548
25
- - Recall: 0.9549
26
- - F1: 0.9545
27
- - Accuracy: 0.9544
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 225 | 0.2093 | 0.9466 | 0.9460 | 0.9448 | 0.945 |
59
- | No log | 2.0 | 450 | 0.1837 | 0.9581 | 0.9578 | 0.9575 | 0.9572 |
60
- | 0.289 | 3.0 | 675 | 0.2127 | 0.9540 | 0.9533 | 0.9527 | 0.9528 |
61
- | 0.289 | 4.0 | 900 | 0.2200 | 0.9558 | 0.9560 | 0.9556 | 0.9556 |
62
- | 0.0448 | 5.0 | 1125 | 0.2501 | 0.9565 | 0.9568 | 0.9562 | 0.9561 |
63
- | 0.0448 | 6.0 | 1350 | 0.2577 | 0.9561 | 0.9559 | 0.9557 | 0.9556 |
64
- | 0.0118 | 7.0 | 1575 | 0.2600 | 0.9559 | 0.9552 | 0.9554 | 0.955 |
65
- | 0.0118 | 8.0 | 1800 | 0.2770 | 0.9555 | 0.9552 | 0.9552 | 0.955 |
66
- | 0.0044 | 9.0 | 2025 | 0.2838 | 0.9548 | 0.9549 | 0.9545 | 0.9544 |
67
- | 0.0044 | 10.0 | 2250 | 0.2838 | 0.9548 | 0.9549 | 0.9545 | 0.9544 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2381
24
+ - Precision: 0.9596
25
+ - Recall: 0.9599
26
+ - F1: 0.9594
27
+ - Accuracy: 0.9594
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 225 | 0.2213 | 0.9434 | 0.9430 | 0.9419 | 0.9422 |
59
+ | No log | 2.0 | 450 | 0.1806 | 0.9512 | 0.9516 | 0.9508 | 0.9506 |
60
+ | 0.3512 | 3.0 | 675 | 0.1927 | 0.9515 | 0.9518 | 0.9512 | 0.9511 |
61
+ | 0.3512 | 4.0 | 900 | 0.2410 | 0.9490 | 0.9494 | 0.9490 | 0.9489 |
62
+ | 0.044 | 5.0 | 1125 | 0.2280 | 0.9554 | 0.9556 | 0.9550 | 0.955 |
63
+ | 0.044 | 6.0 | 1350 | 0.2199 | 0.9611 | 0.9609 | 0.9606 | 0.9606 |
64
+ | 0.0176 | 7.0 | 1575 | 0.2272 | 0.9562 | 0.9565 | 0.9560 | 0.9561 |
65
+ | 0.0176 | 8.0 | 1800 | 0.2321 | 0.9574 | 0.9576 | 0.9572 | 0.9572 |
66
+ | 0.0067 | 9.0 | 2025 | 0.2397 | 0.9590 | 0.9593 | 0.9588 | 0.9589 |
67
+ | 0.0067 | 10.0 | 2250 | 0.2381 | 0.9596 | 0.9599 | 0.9594 | 0.9594 |
68
 
69
 
70
  ### Framework versions