--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_large_with_preprocessing_grid_search results: [] --- # BERT_large_with_preprocessing_grid_search This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0365 - Precision: 0.8410 - Recall: 0.8308 - F1: 0.8352 - Accuracy: 0.8753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9616 | 1.0 | 510 | 0.6482 | 0.7704 | 0.8009 | 0.7781 | 0.8360 | | 0.4395 | 2.0 | 1020 | 0.7507 | 0.8422 | 0.7993 | 0.8157 | 0.8552 | | 0.2995 | 3.0 | 1530 | 0.7064 | 0.8445 | 0.8213 | 0.8287 | 0.8684 | | 0.2117 | 4.0 | 2040 | 0.7889 | 0.8262 | 0.8325 | 0.8245 | 0.8679 | | 0.1805 | 5.0 | 2550 | 0.9295 | 0.8406 | 0.8161 | 0.8271 | 0.8670 | | 0.1225 | 6.0 | 3060 | 0.9491 | 0.8429 | 0.8260 | 0.8333 | 0.8758 | | 0.0983 | 7.0 | 3570 | 0.9901 | 0.8444 | 0.8299 | 0.8359 | 0.8773 | | 0.0869 | 8.0 | 4080 | 1.0300 | 0.8377 | 0.8278 | 0.8319 | 0.8719 | | 0.0745 | 9.0 | 4590 | 1.0220 | 0.8439 | 0.8341 | 0.8379 | 0.8773 | | 0.0591 | 10.0 | 5100 | 1.0365 | 0.8410 | 0.8308 | 0.8352 | 0.8753 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3