--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_large_with_preprocessing_grid_search results: [] --- # BERT_large_with_preprocessing_grid_search This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0732 - Precision: 0.0194 - Recall: 0.125 - F1: 0.0336 - Accuracy: 0.1551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.1235 | 1.0 | 510 | 2.0738 | 0.0284 | 0.125 | 0.0462 | 0.2268 | | 2.1058 | 2.0 | 1020 | 2.0805 | 0.0194 | 0.125 | 0.0336 | 0.1551 | | 2.1039 | 3.0 | 1530 | 2.0780 | 0.0345 | 0.125 | 0.0541 | 0.2759 | | 2.1045 | 4.0 | 2040 | 2.0734 | 0.0284 | 0.125 | 0.0462 | 0.2268 | | 2.0963 | 5.0 | 2550 | 2.0779 | 0.0041 | 0.125 | 0.0080 | 0.0329 | | 2.0975 | 6.0 | 3060 | 2.0750 | 0.0284 | 0.125 | 0.0462 | 0.2268 | | 2.0944 | 7.0 | 3570 | 2.0734 | 0.0194 | 0.125 | 0.0336 | 0.1551 | | 2.1004 | 8.0 | 4080 | 2.0820 | 0.0029 | 0.125 | 0.0056 | 0.0231 | | 2.0974 | 9.0 | 4590 | 2.0724 | 0.0187 | 0.125 | 0.0326 | 0.1497 | | 2.0936 | 10.0 | 5100 | 2.0732 | 0.0194 | 0.125 | 0.0336 | 0.1551 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3