--- license: apache-2.0 library_name: transformers --- # Mistral-7B-Instruct-SQL-ian ## About the Model This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3. https://huggingface.co./datasets/gretelai/synthetic_text_to_sql - **Model Name:** Mistral-7B-Instruct-SQL-ian - **Developed by:** kubwa - **Base Model Name:** mistralai/Mistral-7B-Instruct-v0.3 - **Base Model URL:** [Mistral-7B-Instruct-v0.3](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.3) - **Base Model Description:** The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3. Mistral-7B-v0.3 has the following changes compared to Mistral-7B-v0.2 - Extended vocabulary to 32768 - Supports v3 Tokenizer - Supports function calling - **Dataset Name:** gretelai/synthetic_text_to_sql - **Dataset URL:** [synthetic_text_to_sql](https://huggingface.co./datasets/gretelai/synthetic_text_to_sql) - **Dataset Description:** gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. ## Prompt Template ``` ### Instruction: {question} ### Context: {schema} ### Response: ``` ## How to Use it ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("kubwa/Mistral-7B-Instruct-SQL-ian") tokenizer = AutoTokenizer.from_pretrained("kubwa/Mistral-7B-Instruct-SQL-ian",use_fast=False) text = """ ### Instruction: What is the total volume of timber sold by each salesperson, sorted by salesperson? ### Context: CREATE TABLE salesperson (salesperson_id INT, name TEXT, region TEXT); INSERT INTO salesperson (salesperson_id, name, region) VALUES (1, 'John Doe', 'North'), (2, 'Jane Smith', 'South'); CREATE TABLE timber_sales (sales_id INT, salesperson_id INT, volume REAL, sale_date DATE); INSERT INTO timber_sales (sales_id, salesperson_id, volume, sale_date) VALUES (1, 1, 120, '2021-01-01'), (2, 1, 150, '2021-02-01'), (3, 2, 180, '2021-01-01'); ### Response: """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) inputs = tokenizer(text, return_tensors="pt") inputs = {key: value.to(device) for key, value in inputs.items()} outputs = model.generate(**inputs, max_new_tokens=300, pad_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Example Output ``` ### Instruction: What is the total volume of timber sold by each salesperson, sorted by salesperson? ### Context: CREATE TABLE salesperson (salesperson_id INT, name TEXT, region TEXT); INSERT INTO salesperson (salesperson_id, name, region) VALUES (1, 'John Doe', 'North'), (2, 'Jane Smith', 'South'); CREATE TABLE timber_sales (sales_id INT, salesperson_id INT, volume REAL, sale_date DATE); INSERT INTO timber_sales (sales_id, salesperson_id, volume, sale_date) VALUES (1, 1, 120, '2021-01-01'), (2, 1, 150, '2021-02-01'), (3, 2, 180, '2021-01-01'); ### Response: SELECT salesperson.name, SUM(timber_sales.volume) as total_volume FROM salesperson JOIN timber_sales ON salesperson.salesperson_id = timber_sales.salesperson_id GROUP BY salesperson.name ORDER BY total_volume DESC; ``` ## Hardware and Software - **Training Hardware:** 4 Tesla V100-PCIE-32GB GPUs ## License - Apache-2.0