{"current_steps": 5, "total_steps": 1216, "loss": 1.7879, "accuracy": 0.30666670203208923, "learning_rate": 4.0983606557377046e-08, "epoch": 0.008214676889375685, "percentage": 0.41, "elapsed_time": "0:02:56", "remaining_time": "11:53:00"} {"current_steps": 10, "total_steps": 1216, "loss": 1.6789, "accuracy": 0.7333334684371948, "learning_rate": 8.196721311475409e-08, "epoch": 0.01642935377875137, "percentage": 0.82, "elapsed_time": "0:05:46", "remaining_time": "11:36:40"} {"current_steps": 15, "total_steps": 1216, "loss": 1.4459, "accuracy": 0.8666666746139526, "learning_rate": 1.2295081967213113e-07, "epoch": 0.024644030668127054, "percentage": 1.23, "elapsed_time": "0:08:36", "remaining_time": "11:29:23"} {"current_steps": 20, "total_steps": 1216, "loss": 1.316, "accuracy": 0.9200000166893005, "learning_rate": 1.6393442622950818e-07, "epoch": 0.03285870755750274, "percentage": 1.64, "elapsed_time": "0:11:26", "remaining_time": "11:23:59"} {"current_steps": 25, "total_steps": 1216, "loss": 1.26, "accuracy": 0.9466667175292969, "learning_rate": 2.0491803278688524e-07, "epoch": 0.04107338444687842, "percentage": 2.06, "elapsed_time": "0:14:17", "remaining_time": "11:20:36"} {"current_steps": 30, "total_steps": 1216, "loss": 1.1511, "accuracy": 0.9466667175292969, "learning_rate": 2.4590163934426226e-07, "epoch": 0.04928806133625411, "percentage": 2.47, "elapsed_time": "0:17:07", "remaining_time": "11:17:07"} {"current_steps": 35, "total_steps": 1216, "loss": 1.0435, "accuracy": 0.9600000381469727, "learning_rate": 2.868852459016393e-07, "epoch": 0.05750273822562979, "percentage": 2.88, "elapsed_time": "0:19:58", "remaining_time": "11:13:51"} {"current_steps": 40, "total_steps": 1216, "loss": 0.9343, "accuracy": 0.9333333969116211, "learning_rate": 3.2786885245901637e-07, "epoch": 0.06571741511500548, "percentage": 3.29, "elapsed_time": "0:22:48", "remaining_time": "11:10:34"} {"current_steps": 45, "total_steps": 1216, "loss": 0.8683, "accuracy": 0.9600000381469727, "learning_rate": 3.6885245901639347e-07, "epoch": 0.07393209200438117, "percentage": 3.7, "elapsed_time": "0:25:38", "remaining_time": "11:07:25"} {"current_steps": 50, "total_steps": 1216, "loss": 0.7963, "accuracy": 0.9600000381469727, "learning_rate": 4.0983606557377047e-07, "epoch": 0.08214676889375684, "percentage": 4.11, "elapsed_time": "0:28:29", "remaining_time": "11:04:15"} {"current_steps": 55, "total_steps": 1216, "loss": 0.8148, "accuracy": 0.9466667175292969, "learning_rate": 4.508196721311475e-07, "epoch": 0.09036144578313253, "percentage": 4.52, "elapsed_time": "0:31:19", "remaining_time": "11:01:03"} {"current_steps": 60, "total_steps": 1216, "loss": 0.8114, "accuracy": 0.9200000166893005, "learning_rate": 4.918032786885245e-07, "epoch": 0.09857612267250822, "percentage": 4.93, "elapsed_time": "0:34:09", "remaining_time": "10:58:10"} {"current_steps": 65, "total_steps": 1216, "loss": 0.7666, "accuracy": 0.9866666793823242, "learning_rate": 4.999852034151641e-07, "epoch": 0.10679079956188389, "percentage": 5.35, "elapsed_time": "0:37:00", "remaining_time": "10:55:21"} {"current_steps": 70, "total_steps": 1216, "loss": 0.6927, "accuracy": 0.9466667175292969, "learning_rate": 4.999250952911133e-07, "epoch": 0.11500547645125958, "percentage": 5.76, "elapsed_time": "0:39:50", "remaining_time": "10:52:12"} {"current_steps": 75, "total_steps": 1216, "loss": 0.6651, "accuracy": 0.9733333587646484, "learning_rate": 4.998187619501184e-07, "epoch": 0.12322015334063527, "percentage": 6.17, "elapsed_time": "0:42:40", "remaining_time": "10:49:17"} {"current_steps": 80, "total_steps": 1216, "loss": 0.706, "accuracy": 0.9333333969116211, "learning_rate": 4.996662230591989e-07, "epoch": 0.13143483023001096, "percentage": 6.58, "elapsed_time": "0:45:30", "remaining_time": "10:46:15"} {"current_steps": 85, "total_steps": 1216, "loss": 0.6425, "accuracy": 0.9600000381469727, "learning_rate": 4.994675068313813e-07, "epoch": 0.13964950711938665, "percentage": 6.99, "elapsed_time": "0:48:20", "remaining_time": "10:43:19"} {"current_steps": 90, "total_steps": 1216, "loss": 0.6741, "accuracy": 0.9466666579246521, "learning_rate": 4.992226500204806e-07, "epoch": 0.14786418400876233, "percentage": 7.4, "elapsed_time": "0:51:10", "remaining_time": "10:40:20"} {"current_steps": 95, "total_steps": 1216, "loss": 0.7786, "accuracy": 0.9733333587646484, "learning_rate": 4.989316979143029e-07, "epoch": 0.156078860898138, "percentage": 7.81, "elapsed_time": "0:54:00", "remaining_time": "10:37:20"} {"current_steps": 100, "total_steps": 1216, "loss": 0.656, "accuracy": 0.9200000166893005, "learning_rate": 4.985947043262686e-07, "epoch": 0.16429353778751368, "percentage": 8.22, "elapsed_time": "0:56:50", "remaining_time": "10:34:23"} {"current_steps": 105, "total_steps": 1216, "loss": 0.6173, "accuracy": 0.9466666579246521, "learning_rate": 4.982117315854593e-07, "epoch": 0.17250821467688937, "percentage": 8.63, "elapsed_time": "0:59:42", "remaining_time": "10:31:44"} {"current_steps": 110, "total_steps": 1216, "loss": 0.6725, "accuracy": 0.9466666579246521, "learning_rate": 4.977828505250903e-07, "epoch": 0.18072289156626506, "percentage": 9.05, "elapsed_time": "1:02:32", "remaining_time": "10:28:52"} {"current_steps": 115, "total_steps": 1216, "loss": 0.6416, "accuracy": 0.9599999785423279, "learning_rate": 4.973081404694087e-07, "epoch": 0.18893756845564075, "percentage": 9.46, "elapsed_time": "1:05:23", "remaining_time": "10:26:03"} {"current_steps": 120, "total_steps": 1216, "loss": 0.6327, "accuracy": 0.9466667175292969, "learning_rate": 4.967876892190227e-07, "epoch": 0.19715224534501644, "percentage": 9.87, "elapsed_time": "1:08:13", "remaining_time": "10:23:11"} {"current_steps": 125, "total_steps": 1216, "loss": 0.6021, "accuracy": 0.9733333587646484, "learning_rate": 4.962215930346614e-07, "epoch": 0.20536692223439212, "percentage": 10.28, "elapsed_time": "1:11:04", "remaining_time": "10:20:17"} {"current_steps": 130, "total_steps": 1216, "loss": 0.5662, "accuracy": 1.0, "learning_rate": 4.956099566193716e-07, "epoch": 0.21358159912376778, "percentage": 10.69, "elapsed_time": "1:13:55", "remaining_time": "10:17:32"} {"current_steps": 135, "total_steps": 1216, "loss": 0.6399, "accuracy": 0.9600000381469727, "learning_rate": 4.949528930991521e-07, "epoch": 0.22179627601314347, "percentage": 11.1, "elapsed_time": "1:16:45", "remaining_time": "10:14:37"} {"current_steps": 140, "total_steps": 1216, "loss": 0.6103, "accuracy": 0.9600000381469727, "learning_rate": 4.9425052400203e-07, "epoch": 0.23001095290251916, "percentage": 11.51, "elapsed_time": "1:19:35", "remaining_time": "10:11:46"} {"current_steps": 145, "total_steps": 1216, "loss": 0.543, "accuracy": 0.9466666579246521, "learning_rate": 4.935029792355834e-07, "epoch": 0.23822562979189485, "percentage": 11.92, "elapsed_time": "1:22:26", "remaining_time": "10:08:54"} {"current_steps": 150, "total_steps": 1216, "loss": 0.6219, "accuracy": 0.9333333969116211, "learning_rate": 4.927103970629147e-07, "epoch": 0.24644030668127054, "percentage": 12.34, "elapsed_time": "1:25:18", "remaining_time": "10:06:12"} {"current_steps": 155, "total_steps": 1216, "loss": 0.5702, "accuracy": 0.9866666793823242, "learning_rate": 4.918729240770775e-07, "epoch": 0.2546549835706462, "percentage": 12.75, "elapsed_time": "1:28:09", "remaining_time": "10:03:24"} {"current_steps": 160, "total_steps": 1216, "loss": 0.6561, "accuracy": 0.9600000381469727, "learning_rate": 4.909907151739633e-07, "epoch": 0.2628696604600219, "percentage": 13.16, "elapsed_time": "1:30:59", "remaining_time": "10:00:32"} {"current_steps": 165, "total_steps": 1216, "loss": 0.607, "accuracy": 0.9600000381469727, "learning_rate": 4.900639335236526e-07, "epoch": 0.2710843373493976, "percentage": 13.57, "elapsed_time": "1:33:49", "remaining_time": "9:57:37"} {"current_steps": 170, "total_steps": 1216, "loss": 0.5889, "accuracy": 0.9600000381469727, "learning_rate": 4.890927505402359e-07, "epoch": 0.2792990142387733, "percentage": 13.98, "elapsed_time": "1:36:40", "remaining_time": "9:54:47"} {"current_steps": 175, "total_steps": 1216, "loss": 0.5662, "accuracy": 0.9733333587646484, "learning_rate": 4.880773458501089e-07, "epoch": 0.28751369112814895, "percentage": 14.39, "elapsed_time": "1:39:30", "remaining_time": "9:51:57"} {"current_steps": 180, "total_steps": 1216, "loss": 0.6129, "accuracy": 0.9333333373069763, "learning_rate": 4.870179072587498e-07, "epoch": 0.29572836801752467, "percentage": 14.8, "elapsed_time": "1:42:21", "remaining_time": "9:49:05"} {"current_steps": 185, "total_steps": 1216, "loss": 0.5417, "accuracy": 0.9733333587646484, "learning_rate": 4.859146307159841e-07, "epoch": 0.30394304490690033, "percentage": 15.21, "elapsed_time": "1:45:11", "remaining_time": "9:46:11"} {"current_steps": 190, "total_steps": 1216, "loss": 0.5551, "accuracy": 0.9733333587646484, "learning_rate": 4.847677202797414e-07, "epoch": 0.312157721796276, "percentage": 15.62, "elapsed_time": "1:48:01", "remaining_time": "9:43:21"} {"current_steps": 195, "total_steps": 1216, "loss": 0.5446, "accuracy": 0.9733333587646484, "learning_rate": 4.835773880783144e-07, "epoch": 0.3203723986856517, "percentage": 16.04, "elapsed_time": "1:50:52", "remaining_time": "9:40:29"} {"current_steps": 200, "total_steps": 1216, "loss": 0.5444, "accuracy": 0.9600000381469727, "learning_rate": 4.823438542711238e-07, "epoch": 0.32858707557502737, "percentage": 16.45, "elapsed_time": "1:53:42", "remaining_time": "9:37:38"} {"current_steps": 205, "total_steps": 1216, "loss": 0.6075, "accuracy": 0.9600000381469727, "learning_rate": 4.81067347007999e-07, "epoch": 0.3368017524644031, "percentage": 16.86, "elapsed_time": "1:56:32", "remaining_time": "9:34:46"} {"current_steps": 210, "total_steps": 1216, "loss": 0.5425, "accuracy": 1.0, "learning_rate": 4.797481023869801e-07, "epoch": 0.34501642935377874, "percentage": 17.27, "elapsed_time": "1:59:23", "remaining_time": "9:31:56"} {"current_steps": 215, "total_steps": 1216, "loss": 0.546, "accuracy": 0.9866666793823242, "learning_rate": 4.783863644106502e-07, "epoch": 0.35323110624315446, "percentage": 17.68, "elapsed_time": "2:02:13", "remaining_time": "9:29:03"} {"current_steps": 220, "total_steps": 1216, "loss": 0.5062, "accuracy": 1.0, "learning_rate": 4.769823849410053e-07, "epoch": 0.3614457831325301, "percentage": 18.09, "elapsed_time": "2:05:03", "remaining_time": "9:26:11"} {"current_steps": 225, "total_steps": 1216, "loss": 0.5832, "accuracy": 0.9866666793823242, "learning_rate": 4.7553642365287127e-07, "epoch": 0.3696604600219058, "percentage": 18.5, "elapsed_time": "2:07:54", "remaining_time": "9:23:20"} {"current_steps": 230, "total_steps": 1216, "loss": 0.5248, "accuracy": 0.9599999785423279, "learning_rate": 4.7404874798587493e-07, "epoch": 0.3778751369112815, "percentage": 18.91, "elapsed_time": "2:10:44", "remaining_time": "9:20:30"} {"current_steps": 235, "total_steps": 1216, "loss": 0.5831, "accuracy": 0.9733333587646484, "learning_rate": 4.7251963309497965e-07, "epoch": 0.38608981380065716, "percentage": 19.33, "elapsed_time": "2:13:34", "remaining_time": "9:17:37"} {"current_steps": 240, "total_steps": 1216, "loss": 0.4846, "accuracy": 0.9600000381469727, "learning_rate": 4.709493617995938e-07, "epoch": 0.39430449069003287, "percentage": 19.74, "elapsed_time": "2:16:25", "remaining_time": "9:14:46"} {"current_steps": 245, "total_steps": 1216, "loss": 0.5795, "accuracy": 0.9733333587646484, "learning_rate": 4.6933822453126114e-07, "epoch": 0.40251916757940853, "percentage": 20.15, "elapsed_time": "2:19:15", "remaining_time": "9:11:55"} {"current_steps": 250, "total_steps": 1216, "loss": 0.5041, "accuracy": 0.9600000381469727, "learning_rate": 4.676865192799443e-07, "epoch": 0.41073384446878425, "percentage": 20.56, "elapsed_time": "2:22:05", "remaining_time": "9:09:02"} {"current_steps": 255, "total_steps": 1216, "loss": 0.5671, "accuracy": 0.9466667175292969, "learning_rate": 4.65994551538909e-07, "epoch": 0.4189485213581599, "percentage": 20.97, "elapsed_time": "2:24:55", "remaining_time": "9:06:09"} {"current_steps": 260, "total_steps": 1216, "loss": 0.5728, "accuracy": 0.9600000381469727, "learning_rate": 4.642626342482215e-07, "epoch": 0.42716319824753557, "percentage": 21.38, "elapsed_time": "2:27:45", "remaining_time": "9:03:18"} {"current_steps": 265, "total_steps": 1216, "loss": 0.5359, "accuracy": 0.9466667175292969, "learning_rate": 4.624910877368684e-07, "epoch": 0.4353778751369113, "percentage": 21.79, "elapsed_time": "2:30:36", "remaining_time": "9:00:28"} {"current_steps": 270, "total_steps": 1216, "loss": 0.4866, "accuracy": 0.9866666793823242, "learning_rate": 4.606802396635098e-07, "epoch": 0.44359255202628695, "percentage": 22.2, "elapsed_time": "2:33:26", "remaining_time": "8:57:38"} {"current_steps": 275, "total_steps": 1216, "loss": 0.5245, "accuracy": 0.9600000381469727, "learning_rate": 4.588304249558763e-07, "epoch": 0.45180722891566266, "percentage": 22.62, "elapsed_time": "2:36:17", "remaining_time": "8:54:48"} {"current_steps": 280, "total_steps": 1216, "loss": 0.5407, "accuracy": 0.9600000381469727, "learning_rate": 4.569419857488228e-07, "epoch": 0.4600219058050383, "percentage": 23.03, "elapsed_time": "2:39:08", "remaining_time": "8:51:59"} {"current_steps": 285, "total_steps": 1216, "loss": 0.5136, "accuracy": 0.9600000381469727, "learning_rate": 4.550152713210478e-07, "epoch": 0.46823658269441404, "percentage": 23.44, "elapsed_time": "2:41:59", "remaining_time": "8:49:09"} {"current_steps": 290, "total_steps": 1216, "loss": 0.5254, "accuracy": 0.9733333587646484, "learning_rate": 4.530506380304925e-07, "epoch": 0.4764512595837897, "percentage": 23.85, "elapsed_time": "2:44:49", "remaining_time": "8:46:19"} {"current_steps": 295, "total_steps": 1216, "loss": 0.502, "accuracy": 1.0, "learning_rate": 4.510484492484301e-07, "epoch": 0.4846659364731654, "percentage": 24.26, "elapsed_time": "2:47:40", "remaining_time": "8:43:29"} {"current_steps": 300, "total_steps": 1216, "loss": 0.5684, "accuracy": 0.9733333587646484, "learning_rate": 4.4900907529225797e-07, "epoch": 0.4928806133625411, "percentage": 24.67, "elapsed_time": "2:50:31", "remaining_time": "8:40:39"} {"current_steps": 305, "total_steps": 1216, "loss": 0.4316, "accuracy": 0.9866666793823242, "learning_rate": 4.46932893357005e-07, "epoch": 0.5010952902519168, "percentage": 25.08, "elapsed_time": "2:53:21", "remaining_time": "8:37:48"} {"current_steps": 310, "total_steps": 1216, "loss": 0.5904, "accuracy": 0.9200000762939453, "learning_rate": 4.448202874455672e-07, "epoch": 0.5093099671412924, "percentage": 25.49, "elapsed_time": "2:56:12", "remaining_time": "8:34:57"} {"current_steps": 315, "total_steps": 1216, "loss": 0.5109, "accuracy": 0.9733333587646484, "learning_rate": 4.426716482976838e-07, "epoch": 0.5175246440306681, "percentage": 25.9, "elapsed_time": "2:59:02", "remaining_time": "8:32:06"} {"current_steps": 320, "total_steps": 1216, "loss": 0.5342, "accuracy": 0.9733333587646484, "learning_rate": 4.4048737331766774e-07, "epoch": 0.5257393209200438, "percentage": 26.32, "elapsed_time": "3:01:52", "remaining_time": "8:29:14"} {"current_steps": 325, "total_steps": 1216, "loss": 0.5439, "accuracy": 0.9466667175292969, "learning_rate": 4.3826786650090273e-07, "epoch": 0.5339539978094195, "percentage": 26.73, "elapsed_time": "3:04:42", "remaining_time": "8:26:21"} {"current_steps": 330, "total_steps": 1216, "loss": 0.5566, "accuracy": 0.9600000381469727, "learning_rate": 4.3601353835912235e-07, "epoch": 0.5421686746987951, "percentage": 27.14, "elapsed_time": "3:07:32", "remaining_time": "8:23:30"} {"current_steps": 335, "total_steps": 1216, "loss": 0.5323, "accuracy": 0.9733333587646484, "learning_rate": 4.337248058444831e-07, "epoch": 0.5503833515881709, "percentage": 27.55, "elapsed_time": "3:10:22", "remaining_time": "8:20:38"} {"current_steps": 340, "total_steps": 1216, "loss": 0.5321, "accuracy": 0.9200000762939453, "learning_rate": 4.3140209227244617e-07, "epoch": 0.5585980284775466, "percentage": 27.96, "elapsed_time": "3:13:12", "remaining_time": "8:17:46"} {"current_steps": 345, "total_steps": 1216, "loss": 0.4913, "accuracy": 0.9866666793823242, "learning_rate": 4.2904582724348316e-07, "epoch": 0.5668127053669222, "percentage": 28.37, "elapsed_time": "3:16:01", "remaining_time": "8:14:54"} {"current_steps": 350, "total_steps": 1216, "loss": 0.482, "accuracy": 0.9733333587646484, "learning_rate": 4.266564465636182e-07, "epoch": 0.5750273822562979, "percentage": 28.78, "elapsed_time": "3:18:52", "remaining_time": "8:12:03"} {"current_steps": 355, "total_steps": 1216, "loss": 0.45, "accuracy": 0.9733333587646484, "learning_rate": 4.242343921638234e-07, "epoch": 0.5832420591456736, "percentage": 29.19, "elapsed_time": "3:21:42", "remaining_time": "8:09:11"} {"current_steps": 360, "total_steps": 1216, "loss": 0.5051, "accuracy": 0.9733333587646484, "learning_rate": 4.2178011201828044e-07, "epoch": 0.5914567360350493, "percentage": 29.61, "elapsed_time": "3:24:32", "remaining_time": "8:06:20"} {"current_steps": 365, "total_steps": 1216, "loss": 0.5566, "accuracy": 0.9466666579246521, "learning_rate": 4.1929406006152546e-07, "epoch": 0.5996714129244249, "percentage": 30.02, "elapsed_time": "3:27:22", "remaining_time": "8:03:29"} {"current_steps": 370, "total_steps": 1216, "loss": 0.4918, "accuracy": 0.9866666793823242, "learning_rate": 4.167766961044906e-07, "epoch": 0.6078860898138007, "percentage": 30.43, "elapsed_time": "3:30:12", "remaining_time": "8:00:39"} {"current_steps": 375, "total_steps": 1216, "loss": 0.486, "accuracy": 0.9733333587646484, "learning_rate": 4.1422848574945923e-07, "epoch": 0.6161007667031764, "percentage": 30.84, "elapsed_time": "3:33:02", "remaining_time": "7:57:47"} {"current_steps": 380, "total_steps": 1216, "loss": 0.5873, "accuracy": 0.9600000381469727, "learning_rate": 4.1164990030394985e-07, "epoch": 0.624315443592552, "percentage": 31.25, "elapsed_time": "3:35:52", "remaining_time": "7:54:55"} {"current_steps": 385, "total_steps": 1216, "loss": 0.5224, "accuracy": 0.9599999785423279, "learning_rate": 4.09041416693545e-07, "epoch": 0.6325301204819277, "percentage": 31.66, "elapsed_time": "3:38:42", "remaining_time": "7:52:04"} {"current_steps": 390, "total_steps": 1216, "loss": 0.5142, "accuracy": 0.9733333587646484, "learning_rate": 4.064035173736804e-07, "epoch": 0.6407447973713034, "percentage": 32.07, "elapsed_time": "3:41:32", "remaining_time": "7:49:13"} {"current_steps": 395, "total_steps": 1216, "loss": 0.48, "accuracy": 0.9733333587646484, "learning_rate": 4.0373669024041225e-07, "epoch": 0.6489594742606791, "percentage": 32.48, "elapsed_time": "3:44:23", "remaining_time": "7:46:23"} {"current_steps": 400, "total_steps": 1216, "loss": 0.4865, "accuracy": 1.0, "learning_rate": 4.010414285401776e-07, "epoch": 0.6571741511500547, "percentage": 32.89, "elapsed_time": "3:47:13", "remaining_time": "7:43:32"} {"current_steps": 405, "total_steps": 1216, "loss": 0.5159, "accuracy": 0.9600000381469727, "learning_rate": 3.9831823077856565e-07, "epoch": 0.6653888280394304, "percentage": 33.31, "elapsed_time": "3:50:03", "remaining_time": "7:40:41"} {"current_steps": 410, "total_steps": 1216, "loss": 0.4746, "accuracy": 0.9733333587646484, "learning_rate": 3.95567600628115e-07, "epoch": 0.6736035049288062, "percentage": 33.72, "elapsed_time": "3:52:54", "remaining_time": "7:37:51"} {"current_steps": 415, "total_steps": 1216, "loss": 0.4834, "accuracy": 1.0, "learning_rate": 3.9279004683515783e-07, "epoch": 0.6818181818181818, "percentage": 34.13, "elapsed_time": "3:55:44", "remaining_time": "7:35:00"} {"current_steps": 420, "total_steps": 1216, "loss": 0.4278, "accuracy": 1.0, "learning_rate": 3.8998608312572234e-07, "epoch": 0.6900328587075575, "percentage": 34.54, "elapsed_time": "3:58:34", "remaining_time": "7:32:09"} {"current_steps": 425, "total_steps": 1216, "loss": 0.4744, "accuracy": 0.9733333587646484, "learning_rate": 3.8715622811051753e-07, "epoch": 0.6982475355969332, "percentage": 34.95, "elapsed_time": "4:01:24", "remaining_time": "7:29:18"} {"current_steps": 430, "total_steps": 1216, "loss": 0.5166, "accuracy": 0.9466666579246521, "learning_rate": 3.843010051890114e-07, "epoch": 0.7064622124863089, "percentage": 35.36, "elapsed_time": "4:04:14", "remaining_time": "7:26:27"} {"current_steps": 435, "total_steps": 1216, "loss": 0.5787, "accuracy": 0.9600000381469727, "learning_rate": 3.8142094245262615e-07, "epoch": 0.7146768893756845, "percentage": 35.77, "elapsed_time": "4:07:05", "remaining_time": "7:23:37"} {"current_steps": 440, "total_steps": 1216, "loss": 0.4501, "accuracy": 0.9733333587646484, "learning_rate": 3.785165725870637e-07, "epoch": 0.7228915662650602, "percentage": 36.18, "elapsed_time": "4:09:55", "remaining_time": "7:20:47"} {"current_steps": 445, "total_steps": 1216, "loss": 0.4821, "accuracy": 0.9866666793823242, "learning_rate": 3.7558843277378203e-07, "epoch": 0.731106243154436, "percentage": 36.6, "elapsed_time": "4:12:46", "remaining_time": "7:17:56"} {"current_steps": 450, "total_steps": 1216, "loss": 0.4907, "accuracy": 0.9866666793823242, "learning_rate": 3.726370645906407e-07, "epoch": 0.7393209200438116, "percentage": 37.01, "elapsed_time": "4:15:36", "remaining_time": "7:15:06"} {"current_steps": 455, "total_steps": 1216, "loss": 0.5102, "accuracy": 0.9466667175292969, "learning_rate": 3.6966301391173204e-07, "epoch": 0.7475355969331873, "percentage": 37.42, "elapsed_time": "4:18:26", "remaining_time": "7:12:15"} {"current_steps": 460, "total_steps": 1216, "loss": 0.4597, "accuracy": 0.9866666793823242, "learning_rate": 3.6666683080641843e-07, "epoch": 0.755750273822563, "percentage": 37.83, "elapsed_time": "4:21:16", "remaining_time": "7:09:24"} {"current_steps": 465, "total_steps": 1216, "loss": 0.4273, "accuracy": 0.9866666793823242, "learning_rate": 3.636490694375937e-07, "epoch": 0.7639649507119387, "percentage": 38.24, "elapsed_time": "4:24:07", "remaining_time": "7:06:34"} {"current_steps": 470, "total_steps": 1216, "loss": 0.5971, "accuracy": 0.9600000381469727, "learning_rate": 3.6061028795918734e-07, "epoch": 0.7721796276013143, "percentage": 38.65, "elapsed_time": "4:26:57", "remaining_time": "7:03:43"} {"current_steps": 475, "total_steps": 1216, "loss": 0.5188, "accuracy": 0.9866666793823242, "learning_rate": 3.5755104841292974e-07, "epoch": 0.78039430449069, "percentage": 39.06, "elapsed_time": "4:29:47", "remaining_time": "7:00:52"} {"current_steps": 480, "total_steps": 1216, "loss": 0.4422, "accuracy": 0.9733333587646484, "learning_rate": 3.544719166243998e-07, "epoch": 0.7886089813800657, "percentage": 39.47, "elapsed_time": "4:32:37", "remaining_time": "6:58:01"} {"current_steps": 485, "total_steps": 1216, "loss": 0.4205, "accuracy": 0.9866666793823242, "learning_rate": 3.513734620983716e-07, "epoch": 0.7968236582694413, "percentage": 39.88, "elapsed_time": "4:35:27", "remaining_time": "6:55:10"} {"current_steps": 490, "total_steps": 1216, "loss": 0.466, "accuracy": 0.9466667175292969, "learning_rate": 3.482562579134809e-07, "epoch": 0.8050383351588171, "percentage": 40.3, "elapsed_time": "4:38:17", "remaining_time": "6:52:19"} {"current_steps": 495, "total_steps": 1216, "loss": 0.434, "accuracy": 0.9733333587646484, "learning_rate": 3.4512088061623073e-07, "epoch": 0.8132530120481928, "percentage": 40.71, "elapsed_time": "4:41:08", "remaining_time": "6:49:30"} {"current_steps": 500, "total_steps": 1216, "loss": 0.4059, "accuracy": 0.9733333587646484, "learning_rate": 3.419679101143555e-07, "epoch": 0.8214676889375685, "percentage": 41.12, "elapsed_time": "4:43:58", "remaining_time": "6:46:39"} {"current_steps": 505, "total_steps": 1216, "loss": 0.4832, "accuracy": 0.9333333969116211, "learning_rate": 3.387979295695632e-07, "epoch": 0.8296823658269441, "percentage": 41.53, "elapsed_time": "4:46:48", "remaining_time": "6:43:47"} {"current_steps": 510, "total_steps": 1216, "loss": 0.4569, "accuracy": 0.9866666793823242, "learning_rate": 3.356115252896764e-07, "epoch": 0.8378970427163198, "percentage": 41.94, "elapsed_time": "4:49:37", "remaining_time": "6:40:56"} {"current_steps": 515, "total_steps": 1216, "loss": 0.4196, "accuracy": 0.9466667175292969, "learning_rate": 3.3240928662019043e-07, "epoch": 0.8461117196056955, "percentage": 42.35, "elapsed_time": "4:52:28", "remaining_time": "6:38:06"} {"current_steps": 520, "total_steps": 1216, "loss": 0.5092, "accuracy": 0.9466667175292969, "learning_rate": 3.291918058352706e-07, "epoch": 0.8543263964950711, "percentage": 42.76, "elapsed_time": "4:55:18", "remaining_time": "6:35:15"} {"current_steps": 525, "total_steps": 1216, "loss": 0.4395, "accuracy": 0.9600000381469727, "learning_rate": 3.259596780282074e-07, "epoch": 0.8625410733844469, "percentage": 43.17, "elapsed_time": "4:58:08", "remaining_time": "6:32:24"} {"current_steps": 530, "total_steps": 1216, "loss": 0.4193, "accuracy": 0.9866666793823242, "learning_rate": 3.2271350100134975e-07, "epoch": 0.8707557502738226, "percentage": 43.59, "elapsed_time": "5:00:59", "remaining_time": "6:29:34"} {"current_steps": 535, "total_steps": 1216, "loss": 0.441, "accuracy": 0.9866666793823242, "learning_rate": 3.1945387515553843e-07, "epoch": 0.8789704271631983, "percentage": 44.0, "elapsed_time": "5:03:49", "remaining_time": "6:26:44"} {"current_steps": 540, "total_steps": 1216, "loss": 0.4126, "accuracy": 0.9866666793823242, "learning_rate": 3.1618140337905764e-07, "epoch": 0.8871851040525739, "percentage": 44.41, "elapsed_time": "5:06:39", "remaining_time": "6:23:53"} {"current_steps": 545, "total_steps": 1216, "loss": 0.3699, "accuracy": 0.9466667175292969, "learning_rate": 3.128966909361271e-07, "epoch": 0.8953997809419496, "percentage": 44.82, "elapsed_time": "5:09:30", "remaining_time": "6:21:03"} {"current_steps": 550, "total_steps": 1216, "loss": 0.4497, "accuracy": 0.9600000381469727, "learning_rate": 3.096003453549549e-07, "epoch": 0.9036144578313253, "percentage": 45.23, "elapsed_time": "5:12:20", "remaining_time": "6:18:13"} {"current_steps": 555, "total_steps": 1216, "loss": 0.4126, "accuracy": 0.9866666793823242, "learning_rate": 3.06292976315371e-07, "epoch": 0.911829134720701, "percentage": 45.64, "elapsed_time": "5:15:11", "remaining_time": "6:15:23"} {"current_steps": 560, "total_steps": 1216, "loss": 0.4401, "accuracy": 0.9466667175292969, "learning_rate": 3.0297519553606324e-07, "epoch": 0.9200438116100766, "percentage": 46.05, "elapsed_time": "5:18:02", "remaining_time": "6:12:33"} {"current_steps": 565, "total_steps": 1216, "loss": 0.5027, "accuracy": 0.9600000381469727, "learning_rate": 2.996476166614363e-07, "epoch": 0.9282584884994524, "percentage": 46.46, "elapsed_time": "5:20:51", "remaining_time": "6:09:42"} {"current_steps": 570, "total_steps": 1216, "loss": 0.4519, "accuracy": 0.9866666793823242, "learning_rate": 2.963108551481142e-07, "epoch": 0.9364731653888281, "percentage": 46.88, "elapsed_time": "5:23:41", "remaining_time": "6:06:51"} {"current_steps": 575, "total_steps": 1216, "loss": 0.4126, "accuracy": 0.9866666793823242, "learning_rate": 2.929655281511075e-07, "epoch": 0.9446878422782037, "percentage": 47.29, "elapsed_time": "5:26:31", "remaining_time": "6:03:59"} {"current_steps": 580, "total_steps": 1216, "loss": 0.4592, "accuracy": 0.9733333587646484, "learning_rate": 2.896122544096667e-07, "epoch": 0.9529025191675794, "percentage": 47.7, "elapsed_time": "5:29:20", "remaining_time": "6:01:08"} {"current_steps": 585, "total_steps": 1216, "loss": 0.5055, "accuracy": 0.9600000381469727, "learning_rate": 2.8625165413284307e-07, "epoch": 0.9611171960569551, "percentage": 48.11, "elapsed_time": "5:32:11", "remaining_time": "5:58:18"} {"current_steps": 590, "total_steps": 1216, "loss": 0.3908, "accuracy": 0.9866666793823242, "learning_rate": 2.8288434888477626e-07, "epoch": 0.9693318729463308, "percentage": 48.52, "elapsed_time": "5:35:00", "remaining_time": "5:55:26"} {"current_steps": 595, "total_steps": 1216, "loss": 0.4225, "accuracy": 0.9466666579246521, "learning_rate": 2.795109614697326e-07, "epoch": 0.9775465498357064, "percentage": 48.93, "elapsed_time": "5:37:49", "remaining_time": "5:52:35"} {"current_steps": 600, "total_steps": 1216, "loss": 0.4339, "accuracy": 1.0, "learning_rate": 2.761321158169134e-07, "epoch": 0.9857612267250822, "percentage": 49.34, "elapsed_time": "5:40:39", "remaining_time": "5:49:44"} {"current_steps": 605, "total_steps": 1216, "loss": 0.4625, "accuracy": 0.9600000381469727, "learning_rate": 2.727484368650553e-07, "epoch": 0.9939759036144579, "percentage": 49.75, "elapsed_time": "5:43:29", "remaining_time": "5:46:53"} {"current_steps": 610, "total_steps": 1216, "loss": 0.4205, "accuracy": 0.9866666793823242, "learning_rate": 2.6936055044684425e-07, "epoch": 1.0021905805038336, "percentage": 50.16, "elapsed_time": "5:47:06", "remaining_time": "5:44:49"} {"current_steps": 615, "total_steps": 1216, "loss": 0.3385, "accuracy": 0.9600000381469727, "learning_rate": 2.659690831731631e-07, "epoch": 1.0104052573932092, "percentage": 50.58, "elapsed_time": "5:49:57", "remaining_time": "5:41:59"} {"current_steps": 620, "total_steps": 1216, "loss": 0.3123, "accuracy": 0.9866666793823242, "learning_rate": 2.6257466231719676e-07, "epoch": 1.0186199342825848, "percentage": 50.99, "elapsed_time": "5:52:46", "remaining_time": "5:39:07"} {"current_steps": 625, "total_steps": 1216, "loss": 0.3671, "accuracy": 0.9466666579246521, "learning_rate": 2.591779156984137e-07, "epoch": 1.0268346111719606, "percentage": 51.4, "elapsed_time": "5:55:37", "remaining_time": "5:36:16"} {"current_steps": 630, "total_steps": 1216, "loss": 0.4083, "accuracy": 0.9866666793823242, "learning_rate": 2.557794715664465e-07, "epoch": 1.0350492880613362, "percentage": 51.81, "elapsed_time": "5:58:26", "remaining_time": "5:33:24"} {"current_steps": 635, "total_steps": 1216, "loss": 0.4569, "accuracy": 0.9600000381469727, "learning_rate": 2.5237995848489417e-07, "epoch": 1.0432639649507118, "percentage": 52.22, "elapsed_time": "6:01:16", "remaining_time": "5:30:33"} {"current_steps": 640, "total_steps": 1216, "loss": 0.4444, "accuracy": 0.9733333587646484, "learning_rate": 2.48980005215064e-07, "epoch": 1.0514786418400877, "percentage": 52.63, "elapsed_time": "6:04:06", "remaining_time": "5:27:41"} {"current_steps": 645, "total_steps": 1216, "loss": 0.3691, "accuracy": 0.9600000381469727, "learning_rate": 2.45580240599679e-07, "epoch": 1.0596933187294633, "percentage": 53.04, "elapsed_time": "6:06:56", "remaining_time": "5:24:50"} {"current_steps": 650, "total_steps": 1216, "loss": 0.3945, "accuracy": 0.9733333587646484, "learning_rate": 2.421812934465696e-07, "epoch": 1.067907995618839, "percentage": 53.45, "elapsed_time": "6:09:47", "remaining_time": "5:22:00"} {"current_steps": 655, "total_steps": 1216, "loss": 0.3696, "accuracy": 0.9600000381469727, "learning_rate": 2.3878379241237134e-07, "epoch": 1.0761226725082147, "percentage": 53.87, "elapsed_time": "6:12:36", "remaining_time": "5:19:07"} {"current_steps": 660, "total_steps": 1216, "loss": 0.4032, "accuracy": 0.9466667175292969, "learning_rate": 2.3538836588625077e-07, "epoch": 1.0843373493975903, "percentage": 54.28, "elapsed_time": "6:15:26", "remaining_time": "5:16:17"} {"current_steps": 665, "total_steps": 1216, "loss": 0.366, "accuracy": 0.9733333587646484, "learning_rate": 2.3199564187368153e-07, "epoch": 1.0925520262869661, "percentage": 54.69, "elapsed_time": "6:18:17", "remaining_time": "5:13:26"} {"current_steps": 670, "total_steps": 1216, "loss": 0.4321, "accuracy": 0.9466667175292969, "learning_rate": 2.2860624788029013e-07, "epoch": 1.1007667031763417, "percentage": 55.1, "elapsed_time": "6:21:06", "remaining_time": "5:10:34"} {"current_steps": 675, "total_steps": 1216, "loss": 0.389, "accuracy": 0.9466667175292969, "learning_rate": 2.2522081079579497e-07, "epoch": 1.1089813800657173, "percentage": 55.51, "elapsed_time": "6:23:56", "remaining_time": "5:07:42"} {"current_steps": 680, "total_steps": 1216, "loss": 0.3343, "accuracy": 1.0, "learning_rate": 2.2183995677805967e-07, "epoch": 1.1171960569550932, "percentage": 55.92, "elapsed_time": "6:26:45", "remaining_time": "5:04:51"} {"current_steps": 685, "total_steps": 1216, "loss": 0.3718, "accuracy": 0.9866666793823242, "learning_rate": 2.1846431113728062e-07, "epoch": 1.1254107338444688, "percentage": 56.33, "elapsed_time": "6:29:35", "remaining_time": "5:02:00"} {"current_steps": 690, "total_steps": 1216, "loss": 0.3328, "accuracy": 0.9866666793823242, "learning_rate": 2.1509449822033205e-07, "epoch": 1.1336254107338444, "percentage": 56.74, "elapsed_time": "6:32:24", "remaining_time": "4:59:08"} {"current_steps": 695, "total_steps": 1216, "loss": 0.3625, "accuracy": 0.9333333373069763, "learning_rate": 2.1173114129528957e-07, "epoch": 1.1418400876232202, "percentage": 57.15, "elapsed_time": "6:35:14", "remaining_time": "4:56:17"} {"current_steps": 700, "total_steps": 1216, "loss": 0.3981, "accuracy": 0.9733333587646484, "learning_rate": 2.0837486243615226e-07, "epoch": 1.1500547645125958, "percentage": 57.57, "elapsed_time": "6:38:04", "remaining_time": "4:53:26"} {"current_steps": 705, "total_steps": 1216, "loss": 0.3664, "accuracy": 0.9866666793823242, "learning_rate": 2.0502628240778653e-07, "epoch": 1.1582694414019716, "percentage": 57.98, "elapsed_time": "6:40:54", "remaining_time": "4:50:34"} {"current_steps": 710, "total_steps": 1216, "loss": 0.3326, "accuracy": 0.9866666793823242, "learning_rate": 2.0168602055111173e-07, "epoch": 1.1664841182913472, "percentage": 58.39, "elapsed_time": "6:43:43", "remaining_time": "4:47:43"} {"current_steps": 715, "total_steps": 1216, "loss": 0.3275, "accuracy": 0.9600000381469727, "learning_rate": 1.9835469466854887e-07, "epoch": 1.1746987951807228, "percentage": 58.8, "elapsed_time": "6:46:33", "remaining_time": "4:44:52"} {"current_steps": 720, "total_steps": 1216, "loss": 0.3841, "accuracy": 0.9866666793823242, "learning_rate": 1.9503292090975454e-07, "epoch": 1.1829134720700987, "percentage": 59.21, "elapsed_time": "6:49:23", "remaining_time": "4:42:01"} {"current_steps": 725, "total_steps": 1216, "loss": 0.3207, "accuracy": 1.0, "learning_rate": 1.917213136576602e-07, "epoch": 1.1911281489594743, "percentage": 59.62, "elapsed_time": "6:52:13", "remaining_time": "4:39:10"} {"current_steps": 730, "total_steps": 1216, "loss": 0.3945, "accuracy": 0.9733333587646484, "learning_rate": 1.8842048541483756e-07, "epoch": 1.1993428258488499, "percentage": 60.03, "elapsed_time": "6:55:03", "remaining_time": "4:36:19"} {"current_steps": 735, "total_steps": 1216, "loss": 0.3727, "accuracy": 0.9466667175292969, "learning_rate": 1.8513104669021314e-07, "epoch": 1.2075575027382257, "percentage": 60.44, "elapsed_time": "6:57:52", "remaining_time": "4:33:28"} {"current_steps": 740, "total_steps": 1216, "loss": 0.3583, "accuracy": 0.9866666793823242, "learning_rate": 1.8185360588615057e-07, "epoch": 1.2157721796276013, "percentage": 60.86, "elapsed_time": "7:00:41", "remaining_time": "4:30:36"} {"current_steps": 745, "total_steps": 1216, "loss": 0.3533, "accuracy": 0.9733333587646484, "learning_rate": 1.7858876918592232e-07, "epoch": 1.223986856516977, "percentage": 61.27, "elapsed_time": "7:03:31", "remaining_time": "4:27:45"} {"current_steps": 750, "total_steps": 1216, "loss": 0.4265, "accuracy": 0.9600000381469727, "learning_rate": 1.7533714044159299e-07, "epoch": 1.2322015334063527, "percentage": 61.68, "elapsed_time": "7:06:21", "remaining_time": "4:24:54"} {"current_steps": 755, "total_steps": 1216, "loss": 0.3766, "accuracy": 0.9600000381469727, "learning_rate": 1.7209932106233264e-07, "epoch": 1.2404162102957283, "percentage": 62.09, "elapsed_time": "7:09:10", "remaining_time": "4:22:03"} {"current_steps": 760, "total_steps": 1216, "loss": 0.3508, "accuracy": 0.9599999785423279, "learning_rate": 1.688759099031824e-07, "epoch": 1.248630887185104, "percentage": 62.5, "elapsed_time": "7:12:00", "remaining_time": "4:19:12"} {"current_steps": 765, "total_steps": 1216, "loss": 0.3397, "accuracy": 1.0, "learning_rate": 1.656675031542925e-07, "epoch": 1.2568455640744798, "percentage": 62.91, "elapsed_time": "7:14:50", "remaining_time": "4:16:21"} {"current_steps": 770, "total_steps": 1216, "loss": 0.3759, "accuracy": 0.9866666793823242, "learning_rate": 1.6247469423065343e-07, "epoch": 1.2650602409638554, "percentage": 63.32, "elapsed_time": "7:17:40", "remaining_time": "4:13:30"} {"current_steps": 775, "total_steps": 1216, "loss": 0.3163, "accuracy": 0.9866666793823242, "learning_rate": 1.5929807366233977e-07, "epoch": 1.273274917853231, "percentage": 63.73, "elapsed_time": "7:20:30", "remaining_time": "4:10:39"} {"current_steps": 780, "total_steps": 1216, "loss": 0.3369, "accuracy": 0.9733333587646484, "learning_rate": 1.5613822898528794e-07, "epoch": 1.2814895947426068, "percentage": 64.14, "elapsed_time": "7:23:20", "remaining_time": "4:07:48"} {"current_steps": 785, "total_steps": 1216, "loss": 0.4028, "accuracy": 1.0, "learning_rate": 1.5299574463262794e-07, "epoch": 1.2897042716319824, "percentage": 64.56, "elapsed_time": "7:26:09", "remaining_time": "4:04:57"} {"current_steps": 790, "total_steps": 1216, "loss": 0.3757, "accuracy": 0.9733333587646484, "learning_rate": 1.4987120182658877e-07, "epoch": 1.297918948521358, "percentage": 64.97, "elapsed_time": "7:28:59", "remaining_time": "4:02:07"} {"current_steps": 795, "total_steps": 1216, "loss": 0.3603, "accuracy": 0.9866666793823242, "learning_rate": 1.4676517847099745e-07, "epoch": 1.3061336254107339, "percentage": 65.38, "elapsed_time": "7:31:49", "remaining_time": "3:59:15"} {"current_steps": 800, "total_steps": 1216, "loss": 0.371, "accuracy": 1.0, "learning_rate": 1.4367824904439242e-07, "epoch": 1.3143483023001095, "percentage": 65.79, "elapsed_time": "7:34:38", "remaining_time": "3:56:24"} {"current_steps": 805, "total_steps": 1216, "loss": 0.3288, "accuracy": 0.9733333587646484, "learning_rate": 1.4061098449376985e-07, "epoch": 1.3225629791894853, "percentage": 66.2, "elapsed_time": "7:37:28", "remaining_time": "3:53:34"} {"current_steps": 810, "total_steps": 1216, "loss": 0.3387, "accuracy": 0.9600000381469727, "learning_rate": 1.375639521289836e-07, "epoch": 1.330777656078861, "percentage": 66.61, "elapsed_time": "7:40:18", "remaining_time": "3:50:43"} {"current_steps": 815, "total_steps": 1216, "loss": 0.3318, "accuracy": 0.9866666793823242, "learning_rate": 1.3453771551781756e-07, "epoch": 1.3389923329682367, "percentage": 67.02, "elapsed_time": "7:43:08", "remaining_time": "3:47:52"} {"current_steps": 820, "total_steps": 1216, "loss": 0.3743, "accuracy": 0.9733333587646484, "learning_rate": 1.3153283438175034e-07, "epoch": 1.3472070098576123, "percentage": 67.43, "elapsed_time": "7:45:58", "remaining_time": "3:45:01"} {"current_steps": 825, "total_steps": 1216, "loss": 0.3285, "accuracy": 0.9733333587646484, "learning_rate": 1.2854986449243124e-07, "epoch": 1.355421686746988, "percentage": 67.85, "elapsed_time": "7:48:48", "remaining_time": "3:42:11"} {"current_steps": 830, "total_steps": 1216, "loss": 0.3542, "accuracy": 0.9866666793823242, "learning_rate": 1.2558935756888675e-07, "epoch": 1.3636363636363638, "percentage": 68.26, "elapsed_time": "7:51:37", "remaining_time": "3:39:20"} {"current_steps": 835, "total_steps": 1216, "loss": 0.3494, "accuracy": 0.9733333587646484, "learning_rate": 1.226518611754767e-07, "epoch": 1.3718510405257394, "percentage": 68.67, "elapsed_time": "7:54:27", "remaining_time": "3:36:29"} {"current_steps": 840, "total_steps": 1216, "loss": 0.4071, "accuracy": 0.9466667175292969, "learning_rate": 1.1973791862061871e-07, "epoch": 1.380065717415115, "percentage": 69.08, "elapsed_time": "7:57:16", "remaining_time": "3:33:38"} {"current_steps": 845, "total_steps": 1216, "loss": 0.3543, "accuracy": 1.0, "learning_rate": 1.1684806885630003e-07, "epoch": 1.3882803943044908, "percentage": 69.49, "elapsed_time": "8:00:06", "remaining_time": "3:30:47"} {"current_steps": 850, "total_steps": 1216, "loss": 0.3532, "accuracy": 0.9866666793823242, "learning_rate": 1.1398284637839486e-07, "epoch": 1.3964950711938664, "percentage": 69.9, "elapsed_time": "8:02:58", "remaining_time": "3:27:57"} {"current_steps": 855, "total_steps": 1216, "loss": 0.308, "accuracy": 0.9733333587646484, "learning_rate": 1.1114278112780601e-07, "epoch": 1.404709748083242, "percentage": 70.31, "elapsed_time": "8:05:47", "remaining_time": "3:25:06"} {"current_steps": 860, "total_steps": 1216, "loss": 0.3755, "accuracy": 0.9866666793823242, "learning_rate": 1.08328398392449e-07, "epoch": 1.4129244249726178, "percentage": 70.72, "elapsed_time": "8:08:38", "remaining_time": "3:22:16"} {"current_steps": 865, "total_steps": 1216, "loss": 0.3588, "accuracy": 0.9600000381469727, "learning_rate": 1.0554021871009677e-07, "epoch": 1.4211391018619934, "percentage": 71.13, "elapsed_time": "8:11:27", "remaining_time": "3:19:25"} {"current_steps": 870, "total_steps": 1216, "loss": 0.3712, "accuracy": 0.9733333587646484, "learning_rate": 1.0277875777210299e-07, "epoch": 1.429353778751369, "percentage": 71.55, "elapsed_time": "8:14:17", "remaining_time": "3:16:34"} {"current_steps": 875, "total_steps": 1216, "loss": 0.3129, "accuracy": 1.0, "learning_rate": 1.0004452632802158e-07, "epoch": 1.4375684556407449, "percentage": 71.96, "elapsed_time": "8:17:07", "remaining_time": "3:13:44"} {"current_steps": 880, "total_steps": 1216, "loss": 0.316, "accuracy": 0.9866666793823242, "learning_rate": 9.733803009114044e-08, "epoch": 1.4457831325301205, "percentage": 72.37, "elapsed_time": "8:19:57", "remaining_time": "3:10:53"} {"current_steps": 885, "total_steps": 1216, "loss": 0.361, "accuracy": 0.9600000381469727, "learning_rate": 9.465976964494682e-08, "epoch": 1.453997809419496, "percentage": 72.78, "elapsed_time": "8:22:47", "remaining_time": "3:08:02"} {"current_steps": 890, "total_steps": 1216, "loss": 0.3835, "accuracy": 0.9466667175292969, "learning_rate": 9.201024035054053e-08, "epoch": 1.462212486308872, "percentage": 73.19, "elapsed_time": "8:25:37", "remaining_time": "3:05:12"} {"current_steps": 895, "total_steps": 1216, "loss": 0.3592, "accuracy": 1.0, "learning_rate": 8.938993225501495e-08, "epoch": 1.4704271631982475, "percentage": 73.6, "elapsed_time": "8:28:27", "remaining_time": "3:02:21"} {"current_steps": 900, "total_steps": 1216, "loss": 0.3801, "accuracy": 0.9599999785423279, "learning_rate": 8.679933000081879e-08, "epoch": 1.4786418400876231, "percentage": 74.01, "elapsed_time": "8:31:18", "remaining_time": "2:59:31"} {"current_steps": 905, "total_steps": 1216, "loss": 0.3799, "accuracy": 0.9600000381469727, "learning_rate": 8.423891273611855e-08, "epoch": 1.486856516976999, "percentage": 74.42, "elapsed_time": "8:34:08", "remaining_time": "2:56:41"} {"current_steps": 910, "total_steps": 1216, "loss": 0.4051, "accuracy": 0.9866666793823242, "learning_rate": 8.170915402617739e-08, "epoch": 1.4950711938663745, "percentage": 74.84, "elapsed_time": "8:36:59", "remaining_time": "2:53:50"} {"current_steps": 915, "total_steps": 1216, "loss": 0.3165, "accuracy": 0.9866666793823242, "learning_rate": 7.921052176576643e-08, "epoch": 1.5032858707557502, "percentage": 75.25, "elapsed_time": "8:39:49", "remaining_time": "2:51:00"} {"current_steps": 920, "total_steps": 1216, "loss": 0.3758, "accuracy": 0.9466666579246521, "learning_rate": 7.674347809262377e-08, "epoch": 1.511500547645126, "percentage": 75.66, "elapsed_time": "8:42:39", "remaining_time": "2:48:09"} {"current_steps": 925, "total_steps": 1216, "loss": 0.3708, "accuracy": 1.0, "learning_rate": 7.430847930198009e-08, "epoch": 1.5197152245345018, "percentage": 76.07, "elapsed_time": "8:45:30", "remaining_time": "2:45:19"} {"current_steps": 930, "total_steps": 1216, "loss": 0.3144, "accuracy": 0.9733333587646484, "learning_rate": 7.190597576216384e-08, "epoch": 1.5279299014238772, "percentage": 76.48, "elapsed_time": "8:48:20", "remaining_time": "2:42:28"} {"current_steps": 935, "total_steps": 1216, "loss": 0.3675, "accuracy": 0.9866666793823242, "learning_rate": 6.953641183130224e-08, "epoch": 1.536144578313253, "percentage": 76.89, "elapsed_time": "8:51:10", "remaining_time": "2:39:38"} {"current_steps": 940, "total_steps": 1216, "loss": 0.3381, "accuracy": 0.9866666793823242, "learning_rate": 6.720022577513507e-08, "epoch": 1.5443592552026288, "percentage": 77.3, "elapsed_time": "8:54:00", "remaining_time": "2:36:47"} {"current_steps": 945, "total_steps": 1216, "loss": 0.3402, "accuracy": 0.9466667175292969, "learning_rate": 6.489784968595444e-08, "epoch": 1.5525739320920042, "percentage": 77.71, "elapsed_time": "8:56:50", "remaining_time": "2:33:57"} {"current_steps": 950, "total_steps": 1216, "loss": 0.333, "accuracy": 0.9466667175292969, "learning_rate": 6.262970940268652e-08, "epoch": 1.56078860898138, "percentage": 78.12, "elapsed_time": "8:59:40", "remaining_time": "2:31:06"} {"current_steps": 955, "total_steps": 1216, "loss": 0.3346, "accuracy": 0.9866666793823242, "learning_rate": 6.039622443213008e-08, "epoch": 1.5690032858707559, "percentage": 78.54, "elapsed_time": "9:02:29", "remaining_time": "2:28:15"} {"current_steps": 960, "total_steps": 1216, "loss": 0.3428, "accuracy": 0.9866666793823242, "learning_rate": 5.8197807871366e-08, "epoch": 1.5772179627601315, "percentage": 78.95, "elapsed_time": "9:05:19", "remaining_time": "2:25:25"} {"current_steps": 965, "total_steps": 1216, "loss": 0.347, "accuracy": 0.9733333587646484, "learning_rate": 5.6034866331352376e-08, "epoch": 1.585432639649507, "percentage": 79.36, "elapsed_time": "9:08:09", "remaining_time": "2:22:34"} {"current_steps": 970, "total_steps": 1216, "loss": 0.3214, "accuracy": 0.9600000381469727, "learning_rate": 5.390779986171934e-08, "epoch": 1.593647316538883, "percentage": 79.77, "elapsed_time": "9:10:59", "remaining_time": "2:19:44"} {"current_steps": 975, "total_steps": 1216, "loss": 0.3363, "accuracy": 0.9866666793823242, "learning_rate": 5.1817001876777314e-08, "epoch": 1.6018619934282585, "percentage": 80.18, "elapsed_time": "9:13:50", "remaining_time": "2:16:53"} {"current_steps": 980, "total_steps": 1216, "loss": 0.332, "accuracy": 0.9600000381469727, "learning_rate": 4.9762859082752464e-08, "epoch": 1.6100766703176341, "percentage": 80.59, "elapsed_time": "9:16:40", "remaining_time": "2:14:03"} {"current_steps": 985, "total_steps": 1216, "loss": 0.2981, "accuracy": 0.9866666793823242, "learning_rate": 4.774575140626316e-08, "epoch": 1.61829134720701, "percentage": 81.0, "elapsed_time": "9:19:30", "remaining_time": "2:11:12"} {"current_steps": 990, "total_steps": 1216, "loss": 0.4023, "accuracy": 0.9600000381469727, "learning_rate": 4.5766051924049975e-08, "epoch": 1.6265060240963856, "percentage": 81.41, "elapsed_time": "9:22:21", "remaining_time": "2:08:22"} {"current_steps": 995, "total_steps": 1216, "loss": 0.3604, "accuracy": 1.0, "learning_rate": 4.3824126793972934e-08, "epoch": 1.6347207009857612, "percentage": 81.83, "elapsed_time": "9:25:12", "remaining_time": "2:05:32"} {"current_steps": 1000, "total_steps": 1216, "loss": 0.3546, "accuracy": 0.9600000381469727, "learning_rate": 4.192033518728819e-08, "epoch": 1.642935377875137, "percentage": 82.24, "elapsed_time": "9:28:03", "remaining_time": "2:02:42"} {"current_steps": 1005, "total_steps": 1216, "loss": 0.3193, "accuracy": 1.0, "learning_rate": 4.0055029222217125e-08, "epoch": 1.6511500547645126, "percentage": 82.65, "elapsed_time": "9:30:54", "remaining_time": "1:59:51"} {"current_steps": 1010, "total_steps": 1216, "loss": 0.3949, "accuracy": 0.9466667175292969, "learning_rate": 3.8228553898819904e-08, "epoch": 1.6593647316538882, "percentage": 83.06, "elapsed_time": "9:33:44", "remaining_time": "1:57:01"} {"current_steps": 1015, "total_steps": 1216, "loss": 0.3353, "accuracy": 0.9866666793823242, "learning_rate": 3.6441247035185416e-08, "epoch": 1.667579408543264, "percentage": 83.47, "elapsed_time": "9:36:34", "remaining_time": "1:54:10"} {"current_steps": 1020, "total_steps": 1216, "loss": 0.3701, "accuracy": 1.0, "learning_rate": 3.4693439204949855e-08, "epoch": 1.6757940854326396, "percentage": 83.88, "elapsed_time": "9:39:24", "remaining_time": "1:51:20"} {"current_steps": 1025, "total_steps": 1216, "loss": 0.4406, "accuracy": 0.9200000166893005, "learning_rate": 3.298545367615493e-08, "epoch": 1.6840087623220152, "percentage": 84.29, "elapsed_time": "9:42:15", "remaining_time": "1:48:29"} {"current_steps": 1030, "total_steps": 1216, "loss": 0.3592, "accuracy": 0.9733333587646484, "learning_rate": 3.13176063514575e-08, "epoch": 1.692223439211391, "percentage": 84.7, "elapsed_time": "9:45:05", "remaining_time": "1:45:39"} {"current_steps": 1035, "total_steps": 1216, "loss": 0.3571, "accuracy": 0.9600000381469727, "learning_rate": 2.96902057097011e-08, "epoch": 1.7004381161007667, "percentage": 85.12, "elapsed_time": "9:47:55", "remaining_time": "1:42:49"} {"current_steps": 1040, "total_steps": 1216, "loss": 0.335, "accuracy": 0.9866666793823242, "learning_rate": 2.8103552748861475e-08, "epoch": 1.7086527929901423, "percentage": 85.53, "elapsed_time": "9:50:46", "remaining_time": "1:39:58"} {"current_steps": 1045, "total_steps": 1216, "loss": 0.3632, "accuracy": 0.9866666793823242, "learning_rate": 2.65579409303745e-08, "epoch": 1.716867469879518, "percentage": 85.94, "elapsed_time": "9:53:37", "remaining_time": "1:37:08"} {"current_steps": 1050, "total_steps": 1216, "loss": 0.3935, "accuracy": 0.9466666579246521, "learning_rate": 2.505365612485874e-08, "epoch": 1.7250821467688937, "percentage": 86.35, "elapsed_time": "9:56:27", "remaining_time": "1:34:17"} {"current_steps": 1055, "total_steps": 1216, "loss": 0.3287, "accuracy": 0.9600000381469727, "learning_rate": 2.3590976559242275e-08, "epoch": 1.7332968236582693, "percentage": 86.76, "elapsed_time": "9:59:17", "remaining_time": "1:31:27"} {"current_steps": 1060, "total_steps": 1216, "loss": 0.3506, "accuracy": 0.9866666793823242, "learning_rate": 2.21701727653025e-08, "epoch": 1.7415115005476451, "percentage": 87.17, "elapsed_time": "10:02:08", "remaining_time": "1:28:37"} {"current_steps": 1065, "total_steps": 1216, "loss": 0.3882, "accuracy": 0.9600000381469727, "learning_rate": 2.0791507529629522e-08, "epoch": 1.749726177437021, "percentage": 87.58, "elapsed_time": "10:04:59", "remaining_time": "1:25:46"} {"current_steps": 1070, "total_steps": 1216, "loss": 0.277, "accuracy": 0.9866666793823242, "learning_rate": 1.945523584502262e-08, "epoch": 1.7579408543263964, "percentage": 87.99, "elapsed_time": "10:07:49", "remaining_time": "1:22:56"} {"current_steps": 1075, "total_steps": 1216, "loss": 0.3441, "accuracy": 0.9733333587646484, "learning_rate": 1.8161604863327072e-08, "epoch": 1.7661555312157722, "percentage": 88.4, "elapsed_time": "10:10:40", "remaining_time": "1:20:05"} {"current_steps": 1080, "total_steps": 1216, "loss": 0.3273, "accuracy": 1.0, "learning_rate": 1.691085384972235e-08, "epoch": 1.774370208105148, "percentage": 88.82, "elapsed_time": "10:13:31", "remaining_time": "1:17:15"} {"current_steps": 1085, "total_steps": 1216, "loss": 0.2832, "accuracy": 0.9866666793823242, "learning_rate": 1.570321413846845e-08, "epoch": 1.7825848849945234, "percentage": 89.23, "elapsed_time": "10:16:21", "remaining_time": "1:14:25"} {"current_steps": 1090, "total_steps": 1216, "loss": 0.3503, "accuracy": 0.9733333587646484, "learning_rate": 1.4538909090118846e-08, "epoch": 1.7907995618838992, "percentage": 89.64, "elapsed_time": "10:19:11", "remaining_time": "1:11:34"} {"current_steps": 1095, "total_steps": 1216, "loss": 0.3526, "accuracy": 0.9066667556762695, "learning_rate": 1.3418154050208936e-08, "epoch": 1.799014238773275, "percentage": 90.05, "elapsed_time": "10:22:01", "remaining_time": "1:08:44"} {"current_steps": 1100, "total_steps": 1216, "loss": 0.289, "accuracy": 1.0, "learning_rate": 1.2341156309426447e-08, "epoch": 1.8072289156626506, "percentage": 90.46, "elapsed_time": "10:24:52", "remaining_time": "1:05:53"} {"current_steps": 1105, "total_steps": 1216, "loss": 0.2761, "accuracy": 0.9866666793823242, "learning_rate": 1.130811506527149e-08, "epoch": 1.8154435925520263, "percentage": 90.87, "elapsed_time": "10:27:43", "remaining_time": "1:03:03"} {"current_steps": 1110, "total_steps": 1216, "loss": 0.3201, "accuracy": 0.9600000381469727, "learning_rate": 1.0319221385213934e-08, "epoch": 1.823658269441402, "percentage": 91.28, "elapsed_time": "10:30:32", "remaining_time": "1:00:12"} {"current_steps": 1115, "total_steps": 1216, "loss": 0.3573, "accuracy": 0.9466666579246521, "learning_rate": 9.374658171354411e-09, "epoch": 1.8318729463307777, "percentage": 91.69, "elapsed_time": "10:33:23", "remaining_time": "0:57:22"} {"current_steps": 1120, "total_steps": 1216, "loss": 0.3247, "accuracy": 0.9866666793823242, "learning_rate": 8.474600126594983e-09, "epoch": 1.8400876232201533, "percentage": 92.11, "elapsed_time": "10:36:13", "remaining_time": "0:54:32"} {"current_steps": 1125, "total_steps": 1216, "loss": 0.3187, "accuracy": 0.9866666793823242, "learning_rate": 7.619213722327184e-09, "epoch": 1.8483023001095291, "percentage": 92.52, "elapsed_time": "10:39:03", "remaining_time": "0:51:41"} {"current_steps": 1130, "total_steps": 1216, "loss": 0.3863, "accuracy": 0.9866666793823242, "learning_rate": 6.808657167641896e-09, "epoch": 1.8565169769989047, "percentage": 92.93, "elapsed_time": "10:41:52", "remaining_time": "0:48:51"} {"current_steps": 1135, "total_steps": 1216, "loss": 0.3156, "accuracy": 0.9733333587646484, "learning_rate": 6.043080380067539e-09, "epoch": 1.8647316538882803, "percentage": 93.34, "elapsed_time": "10:44:44", "remaining_time": "0:46:00"} {"current_steps": 1140, "total_steps": 1216, "loss": 0.38, "accuracy": 1.0, "learning_rate": 5.322624957841998e-09, "epoch": 1.8729463307776562, "percentage": 93.75, "elapsed_time": "10:47:33", "remaining_time": "0:43:10"} {"current_steps": 1145, "total_steps": 1216, "loss": 0.367, "accuracy": 0.9466667175292969, "learning_rate": 4.647424153723101e-09, "epoch": 1.8811610076670318, "percentage": 94.16, "elapsed_time": "10:50:23", "remaining_time": "0:40:19"} {"current_steps": 1150, "total_steps": 1216, "loss": 0.3801, "accuracy": 0.9466667175292969, "learning_rate": 4.0176028503425826e-09, "epoch": 1.8893756845564074, "percentage": 94.57, "elapsed_time": "10:53:13", "remaining_time": "0:37:29"} {"current_steps": 1155, "total_steps": 1216, "loss": 0.335, "accuracy": 0.9866666793823242, "learning_rate": 3.433277537108481e-09, "epoch": 1.8975903614457832, "percentage": 94.98, "elapsed_time": "10:56:04", "remaining_time": "0:34:38"} {"current_steps": 1160, "total_steps": 1216, "loss": 0.3677, "accuracy": 0.9600000381469727, "learning_rate": 2.8945562886593944e-09, "epoch": 1.9058050383351588, "percentage": 95.39, "elapsed_time": "10:58:54", "remaining_time": "0:31:48"} {"current_steps": 1165, "total_steps": 1216, "loss": 0.333, "accuracy": 0.9733333587646484, "learning_rate": 2.4015387448756976e-09, "epoch": 1.9140197152245344, "percentage": 95.81, "elapsed_time": "11:01:44", "remaining_time": "0:28:58"} {"current_steps": 1170, "total_steps": 1216, "loss": 0.299, "accuracy": 1.0, "learning_rate": 1.954316092450281e-09, "epoch": 1.9222343921139102, "percentage": 96.22, "elapsed_time": "11:04:34", "remaining_time": "0:26:07"} {"current_steps": 1175, "total_steps": 1216, "loss": 0.3, "accuracy": 0.9866666793823242, "learning_rate": 1.5529710480231272e-09, "epoch": 1.9304490690032858, "percentage": 96.63, "elapsed_time": "11:07:25", "remaining_time": "0:23:17"} {"current_steps": 1180, "total_steps": 1216, "loss": 0.3093, "accuracy": 0.9600000381469727, "learning_rate": 1.1975778428823524e-09, "epoch": 1.9386637458926614, "percentage": 97.04, "elapsed_time": "11:10:15", "remaining_time": "0:20:26"} {"current_steps": 1185, "total_steps": 1216, "loss": 0.3245, "accuracy": 0.9733333587646484, "learning_rate": 8.882022092346064e-10, "epoch": 1.9468784227820373, "percentage": 97.45, "elapsed_time": "11:13:06", "remaining_time": "0:17:36"} {"current_steps": 1190, "total_steps": 1216, "loss": 0.3367, "accuracy": 0.9866666793823242, "learning_rate": 6.249013680474368e-10, "epoch": 1.9550930996714129, "percentage": 97.86, "elapsed_time": "11:15:57", "remaining_time": "0:14:46"} {"current_steps": 1195, "total_steps": 1216, "loss": 0.4133, "accuracy": 0.9466667175292969, "learning_rate": 4.0772401846608794e-10, "epoch": 1.9633077765607885, "percentage": 98.27, "elapsed_time": "11:18:48", "remaining_time": "0:11:55"} {"current_steps": 1200, "total_steps": 1216, "loss": 0.3574, "accuracy": 0.9733333587646484, "learning_rate": 2.367103288061223e-10, "epoch": 1.9715224534501643, "percentage": 98.68, "elapsed_time": "11:21:38", "remaining_time": "0:09:05"} {"current_steps": 1205, "total_steps": 1216, "loss": 0.2989, "accuracy": 0.9866666793823242, "learning_rate": 1.1189192912416933e-10, "epoch": 1.9797371303395401, "percentage": 99.1, "elapsed_time": "11:24:30", "remaining_time": "0:06:14"} {"current_steps": 1210, "total_steps": 1216, "loss": 0.3344, "accuracy": 0.9733333587646484, "learning_rate": 3.329190536757731e-11, "epoch": 1.9879518072289155, "percentage": 99.51, "elapsed_time": "11:27:20", "remaining_time": "0:03:24"} {"current_steps": 1215, "total_steps": 1216, "loss": 0.352, "accuracy": 0.9600000381469727, "learning_rate": 9.247951046897906e-13, "epoch": 1.9961664841182913, "percentage": 99.92, "elapsed_time": "11:30:12", "remaining_time": "0:00:34"} {"current_steps": 1216, "total_steps": 1216, "epoch": 1.9978094194961664, "percentage": 100.0, "elapsed_time": "11:34:10", "remaining_time": "0:00:00"}