File size: 2,222 Bytes
8d568d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-2.5b-1000g
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: nucleotide-transformer-finetuned-lora-NucleotideTransformer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nucleotide-transformer-finetuned-lora-NucleotideTransformer
This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-2.5b-1000g](https://huggingface.co./InstaDeepAI/nucleotide-transformer-2.5b-1000g) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1687
- F1: 0.9863
- Mcc Score: 0.9686
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|
| 0.2508 | 0.43 | 100 | 0.1791 | 0.9863 | 0.9686 |
| 0.0793 | 0.85 | 200 | 0.4908 | 0.9429 | 0.8814 |
| 0.0408 | 1.28 | 300 | 0.3990 | 0.9600 | 0.9039 |
| 0.0184 | 1.71 | 400 | 0.2259 | 0.9730 | 0.9359 |
| 0.014 | 2.14 | 500 | 0.1308 | 0.9863 | 0.9686 |
| 0.0313 | 2.56 | 600 | 0.1841 | 0.9863 | 0.9686 |
| 0.0162 | 2.99 | 700 | 0.4267 | 0.9730 | 0.9359 |
| 0.0114 | 3.42 | 800 | 0.2700 | 0.9730 | 0.9359 |
| 0.0 | 3.85 | 900 | 0.1612 | 0.9863 | 0.9686 |
| 0.0 | 4.27 | 1000 | 0.1687 | 0.9863 | 0.9686 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|