--- license: cc-by-nc-sa-4.0 base_model: InstaDeepAI/nucleotide-transformer-v2-500m-multi-species tags: - generated_from_trainer metrics: - f1 - matthews_correlation - accuracy model-index: - name: gut_6000-finetuned-lora-NT-v2-500m-multi-species results: [] --- # gut_6000-finetuned-lora-NT-v2-500m-multi-species This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-500m-multi-species](https://huggingface.co./InstaDeepAI/nucleotide-transformer-v2-500m-multi-species) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4765 - F1: 0.8404 - Matthews Correlation: 0.5698 - Accuracy: 0.7956 - F1 Score: 0.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Matthews Correlation | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------:|:--------:|:--------:| | 0.7596 | 0.02 | 100 | 0.7104 | 0.0744 | -0.1826 | 0.3695 | 0.0744 | | 0.6692 | 0.04 | 200 | 0.6143 | 0.7828 | 0.3311 | 0.6803 | 0.7828 | | 0.6022 | 0.05 | 300 | 0.5708 | 0.8180 | 0.4877 | 0.7563 | 0.8180 | | 0.5577 | 0.07 | 400 | 0.5906 | 0.8080 | 0.5037 | 0.7639 | 0.8080 | | 0.5743 | 0.09 | 500 | 0.5789 | 0.7710 | 0.2695 | 0.6470 | 0.7710 | | 0.5052 | 0.11 | 600 | 0.5010 | 0.8273 | 0.5450 | 0.7842 | 0.8273 | | 0.5012 | 0.12 | 700 | 0.4926 | 0.8409 | 0.5575 | 0.7842 | 0.8409 | | 0.4757 | 0.14 | 800 | 0.4827 | 0.8368 | 0.5588 | 0.7905 | 0.8368 | | 0.5166 | 0.16 | 900 | 0.4715 | 0.8470 | 0.5778 | 0.7948 | 0.8470 | | 0.4667 | 0.18 | 1000 | 0.4765 | 0.8404 | 0.5698 | 0.7956 | 0.8404 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2