--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA9 results: [] --- # Phi0503HMA9 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co./microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2397 | 0.09 | 10 | 0.9388 | | 0.4415 | 0.18 | 20 | 0.2391 | | 0.3515 | 0.27 | 30 | 0.4918 | | 0.5443 | 0.36 | 40 | 0.2339 | | 0.1825 | 0.45 | 50 | 0.1731 | | 0.1495 | 0.54 | 60 | 0.1281 | | 0.1193 | 0.63 | 70 | 0.1264 | | 0.1131 | 0.73 | 80 | 0.0966 | | 0.1079 | 0.82 | 90 | 0.0873 | | 0.0996 | 0.91 | 100 | 0.1119 | | 0.1235 | 1.0 | 110 | 0.1549 | | 0.1281 | 1.09 | 120 | 0.1463 | | 0.1094 | 1.18 | 130 | 0.1796 | | 0.1368 | 1.27 | 140 | 0.0994 | | 0.0742 | 1.36 | 150 | 0.0722 | | 0.0751 | 1.45 | 160 | 0.0777 | | 0.0638 | 1.54 | 170 | 0.0717 | | 0.0619 | 1.63 | 180 | 0.0672 | | 0.0556 | 1.72 | 190 | 0.0699 | | 0.0628 | 1.81 | 200 | 0.0666 | | 0.054 | 1.9 | 210 | 0.0699 | | 0.0534 | 1.99 | 220 | 0.0694 | | 0.0383 | 2.08 | 230 | 0.0679 | | 0.0312 | 2.18 | 240 | 0.0794 | | 0.0266 | 2.27 | 250 | 0.0818 | | 0.0272 | 2.36 | 260 | 0.0765 | | 0.0401 | 2.45 | 270 | 0.0693 | | 0.0272 | 2.54 | 280 | 0.0696 | | 0.0262 | 2.63 | 290 | 0.0736 | | 0.0329 | 2.72 | 300 | 0.0724 | | 0.0316 | 2.81 | 310 | 0.0720 | | 0.0296 | 2.9 | 320 | 0.0715 | | 0.0336 | 2.99 | 330 | 0.0714 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0