--- license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: G0515HMA3H results: [] --- # G0515HMA3H This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1972 | 0.09 | 10 | 2.8225 | | 2.5213 | 0.18 | 20 | 2.0451 | | 1.5809 | 0.27 | 30 | 1.0082 | | 0.6146 | 0.36 | 40 | 0.2677 | | 0.198 | 0.45 | 50 | 0.1607 | | 0.1542 | 0.54 | 60 | 0.1510 | | 0.1498 | 0.63 | 70 | 0.1487 | | 0.1509 | 0.73 | 80 | 0.1518 | | 0.145 | 0.82 | 90 | 0.1489 | | 0.1463 | 0.91 | 100 | 0.1471 | | 0.1486 | 1.0 | 110 | 0.1473 | | 0.1427 | 1.09 | 120 | 0.1465 | | 0.1434 | 1.18 | 130 | 0.1450 | | 0.1442 | 1.27 | 140 | 0.1407 | | 0.1434 | 1.36 | 150 | 0.1392 | | 0.1343 | 1.45 | 160 | 0.1376 | | 0.1372 | 1.54 | 170 | 0.1366 | | 0.135 | 1.63 | 180 | 0.1317 | | 0.1367 | 1.72 | 190 | 0.1341 | | 0.1322 | 1.81 | 200 | 0.1260 | | 0.128 | 1.9 | 210 | 0.1229 | | 0.1286 | 1.99 | 220 | 0.1223 | | 0.1185 | 2.08 | 230 | 0.1197 | | 0.1164 | 2.18 | 240 | 0.1187 | | 0.1126 | 2.27 | 250 | 0.1199 | | 0.1169 | 2.36 | 260 | 0.1184 | | 0.1162 | 2.45 | 270 | 0.1199 | | 0.1135 | 2.54 | 280 | 0.1179 | | 0.1094 | 2.63 | 290 | 0.1156 | | 0.1092 | 2.72 | 300 | 0.1155 | | 0.116 | 2.81 | 310 | 0.1155 | | 0.1142 | 2.9 | 320 | 0.1154 | | 0.1128 | 2.99 | 330 | 0.1153 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0