from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig,AutoConfig import time import torch torch.backends.cuda.matmul.allow_tf32 = True import random from datasets import load_dataset from transformers import TrainingArguments from trl import SFTTrainer from peft import LoraConfig # from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model from torch.nn import CrossEntropyLoss torch.autograd.set_detect_anomaly(True) random_seed = 42 torch.manual_seed(random_seed) random.seed(random_seed) # Set the device for each process device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # torch.cuda.set_device(device) n_ahead_talk_global = 4 n_passes_global = 2 n_ahead_global = 8 n_examples = 0 def model_init(params): original = False if params is None: params = {} else: params = params.params # save params to file n_ahead = params.get("n_ahead", n_ahead_global if not original else 1) n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1) n_passes = params.get("n_passes", n_passes_global if not original else 1) gumbel_temperature = params.get("gumbel_temperature", 1) use_start_thought_token = params.get("use_start_thought_token", True) use_end_thought_token = params.get("use_end_thought_token", True) include_policy_loss = params.get("include_policy_loss", True) gumbel_detach = params.get("gumbel_detach", True) merged_talk_heads = params.get("merged_talk_heads", True) residual_think_head = params.get("residual_think_head", False) optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False) model_id = "LeroyDyer/_Spydaz_Web_AI_V2_Aligned" tokenizer_id = model_id print("Loading model") model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, max_thoughts=n_ahead + n_ahead_talk + 1, merged_talk_heads=merged_talk_heads, merged_lm_and_talk_heads=False, merged_lm_and_think_heads=True, use_concat_talk_head=True, use_shallow_think=True, use_shallow_talk=False, use_complex_think_head=False, use_complex_talk_head=True, use_weighted_talk_head=True, trust_remote_code=True, device_map="auto", ) print("Loaded model") tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right") tokenizer.pad_token_id = tokenizer.eos_token_id special_tokens_to_add = [] if model.use_start_thought_token: special_tokens_to_add.append("<|startthought|>") if model.use_end_thought_token: special_tokens_to_add.append("<|endthought|>") if special_tokens_to_add: tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add}) model.resize_token_embeddings(len(tokenizer)) model.tokenizer = tokenizer for name, module in model.named_modules(): if "embed" in name: print(module, flush=True) model.gumbel_detach = gumbel_detach model.include_policy_loss = include_policy_loss model.use_end_thought_token = use_end_thought_token model.use_start_thought_token = use_start_thought_token model.n_ahead = n_ahead model.n_ahead_talk = n_ahead_talk model.n_passes = n_passes model.residual_think_head = residual_think_head model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start model.gumbel_temperature = gumbel_temperature model.original_mode = original model.config_params = params return model model,tokenizer = model_init(None) tokenizer.save_pretrained("IpretrainedModel") model.save_pretrained("IpretrainedModel") ## TRAINING : peft_config = LoraConfig( r = 128, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj","lm_head", "embed_tokens"], lora_alpha = 32, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", use_dora=True, ) from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig from datasets import load_dataset from transformers import TrainingArguments from trl import SFTTrainer from peft import LoraConfig ## DATA alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN def formatting_prompts_func(examples): instructions = examples["instruction"] inputs = examples["input"] outputs = examples["output"] texts = [] for instruction, input, output in zip(instructions, inputs, outputs): # Must add EOS_TOKEN, otherwise your generation will go on forever! text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN texts.append(text) return { "text" : texts, } pass dataset = load_dataset("gate369/Alpaca-Star", split = "train[:2000]") dataset = dataset.shuffle(seed=3704) dataset = dataset.map(formatting_prompts_func, batched = True,) ## TRAIN model model.train max_seq_length = 32000 training_args = TrainingArguments( output_dir="./out", num_train_epochs=3, per_device_train_batch_size=1, gradient_checkpointing=False, gradient_accumulation_steps=8, optim="lion_32bit", logging_steps=1, save_strategy="steps", save_steps=300, max_steps=1000, bf16=True, tf32=False, learning_rate=6e-05, max_grad_norm=0.3, warmup_ratio=0.06, lr_scheduler_type="cosine", push_to_hub=False, ) trainer = SFTTrainer( args=training_args, train_dataset=dataset, model=model, tokenizer=tokenizer, max_seq_length=max_seq_length, dataset_text_field="text", peft_config=peft_config, ) trainer.train() ## SAVE tokenizer.save_pretrained("SFTTrainerModel") model.save_pretrained("SFTTrainerModel") import os import huggingface_hub from huggingface_hub import notebook_login from huggingface_hub import create_repo, HfApi from huggingface_hub import hf_hub_download from huggingface_hub import create_repo, HfApi from huggingface_hub import snapshot_download MODEL_NAME = "_Spydaz_Web_AI_MistralStar" Folderinput = "SFTTrainerModel" WRITE_TOKEN = "" username = "LeroyDyer" huggingface_hub.login(WRITE_TOKEN) api = HfApi(token=WRITE_TOKEN) # Create empty repo api.create_repo( repo_id = f"{username}/{MODEL_NAME}", repo_type="model", exist_ok=True, ) api.upload_folder( repo_id = f"{username}/{MODEL_NAME}", folder_path = Folderinput )