Upload CREATE MODEL FROM SCRATCH.py
Browse files- CREATE MODEL FROM SCRATCH.py +261 -0
CREATE MODEL FROM SCRATCH.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## CREATE MODEL FROM SCRATCH
|
2 |
+
|
3 |
+
## TOBE REMOVED
|
4 |
+
# pip install reportlab
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig,AutoConfig
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
10 |
+
import random
|
11 |
+
from datasets import load_dataset
|
12 |
+
from transformers import TrainingArguments
|
13 |
+
from trl import SFTTrainer
|
14 |
+
from peft import LoraConfig
|
15 |
+
# from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
|
16 |
+
from torch.nn import CrossEntropyLoss
|
17 |
+
torch.autograd.set_detect_anomaly(True)
|
18 |
+
random_seed = 42
|
19 |
+
torch.manual_seed(random_seed)
|
20 |
+
random.seed(random_seed)
|
21 |
+
# Set the device for each process
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
# torch.cuda.set_device(device)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
n_ahead_talk_global = 4
|
28 |
+
n_passes_global = 2
|
29 |
+
n_ahead_global = 8
|
30 |
+
n_examples = 0
|
31 |
+
|
32 |
+
def model_init(params):
|
33 |
+
original = False
|
34 |
+
if params is None:
|
35 |
+
params = {}
|
36 |
+
else:
|
37 |
+
params = params.params
|
38 |
+
# save params to file
|
39 |
+
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
40 |
+
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
41 |
+
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
42 |
+
gumbel_temperature = params.get("gumbel_temperature", 1)
|
43 |
+
use_start_thought_token = params.get("use_start_thought_token", True)
|
44 |
+
use_end_thought_token = params.get("use_end_thought_token", True)
|
45 |
+
include_policy_loss = params.get("include_policy_loss", True)
|
46 |
+
gumbel_detach = params.get("gumbel_detach", True)
|
47 |
+
merged_talk_heads = params.get("merged_talk_heads", True)
|
48 |
+
residual_think_head = params.get("residual_think_head", False)
|
49 |
+
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
50 |
+
|
51 |
+
model_id = "LeroyDyer/_Spydaz_Web_AI_V2_Aligned"
|
52 |
+
tokenizer_id = model_id
|
53 |
+
print("Loading model")
|
54 |
+
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
model_id,
|
57 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
58 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
59 |
+
merged_talk_heads=merged_talk_heads,
|
60 |
+
merged_lm_and_talk_heads=False,
|
61 |
+
merged_lm_and_think_heads=True,
|
62 |
+
use_concat_talk_head=True,
|
63 |
+
use_shallow_think=True,
|
64 |
+
use_shallow_talk=False,
|
65 |
+
use_complex_think_head=False,
|
66 |
+
use_complex_talk_head=True,
|
67 |
+
use_weighted_talk_head=True,
|
68 |
+
trust_remote_code=True,
|
69 |
+
device_map="auto",
|
70 |
+
)
|
71 |
+
print("Loaded model")
|
72 |
+
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
|
74 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
75 |
+
|
76 |
+
special_tokens_to_add = []
|
77 |
+
if model.use_start_thought_token:
|
78 |
+
special_tokens_to_add.append("<|startthought|>")
|
79 |
+
if model.use_end_thought_token:
|
80 |
+
special_tokens_to_add.append("<|endthought|>")
|
81 |
+
if special_tokens_to_add:
|
82 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
83 |
+
model.resize_token_embeddings(len(tokenizer))
|
84 |
+
model.tokenizer = tokenizer
|
85 |
+
for name, module in model.named_modules():
|
86 |
+
if "embed" in name:
|
87 |
+
print(module, flush=True)
|
88 |
+
|
89 |
+
model.gumbel_detach = gumbel_detach
|
90 |
+
model.include_policy_loss = include_policy_loss
|
91 |
+
model.use_end_thought_token = use_end_thought_token
|
92 |
+
model.use_start_thought_token = use_start_thought_token
|
93 |
+
model.n_ahead = n_ahead
|
94 |
+
model.n_ahead_talk = n_ahead_talk
|
95 |
+
model.n_passes = n_passes
|
96 |
+
model.residual_think_head = residual_think_head
|
97 |
+
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
98 |
+
model.gumbel_temperature = gumbel_temperature
|
99 |
+
model.original_mode = original
|
100 |
+
model.config_params = params
|
101 |
+
return model,tokenizer
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
model,tokenizer = model_init(None)
|
107 |
+
|
108 |
+
model
|
109 |
+
tokenizer.save_pretrained("IModel")
|
110 |
+
model.save_pretrained("IModel")
|
111 |
+
|
112 |
+
import os
|
113 |
+
import huggingface_hub
|
114 |
+
from huggingface_hub import notebook_login
|
115 |
+
from huggingface_hub import create_repo, HfApi
|
116 |
+
from huggingface_hub import hf_hub_download
|
117 |
+
from huggingface_hub import create_repo, HfApi
|
118 |
+
from huggingface_hub import snapshot_download
|
119 |
+
WRITE_TOKEN=""
|
120 |
+
username = "LeroyDyer"
|
121 |
+
huggingface_hub.login(WRITE_TOKEN)
|
122 |
+
api = HfApi(token=WRITE_TOKEN)
|
123 |
+
|
124 |
+
MODEL_NAME = "_Spydaz_Web_AI_MistralStar"
|
125 |
+
Folderinput = "IModel"
|
126 |
+
|
127 |
+
|
128 |
+
# Create empty repo
|
129 |
+
api.create_repo(
|
130 |
+
repo_id = f"{username}/{MODEL_NAME}",
|
131 |
+
repo_type="model",
|
132 |
+
exist_ok=True,
|
133 |
+
)
|
134 |
+
|
135 |
+
api.upload_folder(
|
136 |
+
repo_id = f"{username}/{MODEL_NAME}",
|
137 |
+
folder_path = Folderinput
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
import huggingface_hub
|
144 |
+
from trl import SFTTrainer
|
145 |
+
from transformers import TrainingArguments
|
146 |
+
from datasets import load_dataset
|
147 |
+
from unsloth import FastLanguageModel
|
148 |
+
import torch
|
149 |
+
WRITE_TOKEN = ""
|
150 |
+
username = "LeroyDyer"
|
151 |
+
huggingface_hub.login(WRITE_TOKEN)
|
152 |
+
|
153 |
+
MODEL_ID = "LeroyDyer/_Spydaz_Web_AI_MistralStar"
|
154 |
+
max_seq_length = 1512 # Choose any! We auto support RoPE Scaling internally!
|
155 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
156 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
157 |
+
|
158 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
159 |
+
model_name = MODEL_ID, # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
|
160 |
+
max_seq_length = max_seq_length,
|
161 |
+
dtype = dtype,
|
162 |
+
load_in_4bit = load_in_4bit,
|
163 |
+
#token = "", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
164 |
+
)
|
165 |
+
model = FastLanguageModel.get_peft_model(
|
166 |
+
model,
|
167 |
+
r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
168 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
169 |
+
"gate_proj", "up_proj", "down_proj"],
|
170 |
+
lora_alpha = 64,
|
171 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
172 |
+
bias = "none", # Supports any, but = "none" is optimized
|
173 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
174 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
175 |
+
random_state = 644993,
|
176 |
+
use_rslora = False, # We support rank stabilized LoRA
|
177 |
+
loftq_config = None, # And LoftQ
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
183 |
+
|
184 |
+
### Instruction:
|
185 |
+
{}
|
186 |
+
|
187 |
+
### Input:
|
188 |
+
{}
|
189 |
+
|
190 |
+
### Response:
|
191 |
+
{}"""
|
192 |
+
|
193 |
+
|
194 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
195 |
+
def formatting_prompts_func(examples):
|
196 |
+
instructions = examples["instruction"]
|
197 |
+
inputs = examples["input"]
|
198 |
+
outputs = examples["output"]
|
199 |
+
texts = []
|
200 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
201 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
202 |
+
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
203 |
+
texts.append(text)
|
204 |
+
return { "text" : texts, }
|
205 |
+
pass
|
206 |
+
|
207 |
+
from datasets import load_dataset
|
208 |
+
dataset = load_dataset("gate369/Alpaca-Star", split = "train[:1000]")
|
209 |
+
dataset = dataset.shuffle(seed=9969)
|
210 |
+
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
211 |
+
|
212 |
+
|
213 |
+
from trl import SFTTrainer
|
214 |
+
from transformers import TrainingArguments
|
215 |
+
from unsloth import is_bfloat16_supported
|
216 |
+
from unsloth import UnslothTrainer, UnslothTrainingArguments
|
217 |
+
|
218 |
+
trainer = UnslothTrainer(
|
219 |
+
model = model,
|
220 |
+
tokenizer = tokenizer,
|
221 |
+
train_dataset = dataset,
|
222 |
+
dataset_text_field = "text",
|
223 |
+
max_seq_length = max_seq_length,
|
224 |
+
dataset_num_proc = 8,
|
225 |
+
args = UnslothTrainingArguments(
|
226 |
+
per_device_train_batch_size = 10,
|
227 |
+
gradient_accumulation_steps = 8,
|
228 |
+
|
229 |
+
warmup_ratio = 0.1,
|
230 |
+
num_train_epochs = 2,
|
231 |
+
|
232 |
+
learning_rate = 2e-4,
|
233 |
+
embedding_learning_rate = 2e-5,
|
234 |
+
output_dir = "outputs",
|
235 |
+
save_strategy = "steps",
|
236 |
+
save_steps = 50,
|
237 |
+
fp16 = not is_bfloat16_supported(),
|
238 |
+
bf16 = is_bfloat16_supported(),
|
239 |
+
logging_steps = 1,
|
240 |
+
optim = "adamw_8bit",
|
241 |
+
weight_decay = 0.00,
|
242 |
+
lr_scheduler_type = "cosine",
|
243 |
+
seed = 3607,
|
244 |
+
),
|
245 |
+
)
|
246 |
+
|
247 |
+
trainer_stats = trainer.train()
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
# Merge to 16bit
|
252 |
+
if False: model.save_pretrained_merged("LCARS_AI_015", tokenizer, save_method = "merged_16bit",)
|
253 |
+
if True: model.push_to_hub_merged("_Spydaz_Web_AI_STAR_Aligned", tokenizer, save_method = "merged_16bit", token = "")
|
254 |
+
|
255 |
+
# Merge to 4bit
|
256 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit_forced",)
|
257 |
+
if True: model.push_to_hub_merged("_Spydaz_Web_AI_STAR_Aligned_4_BIT", tokenizer, save_method = "merged_4bit_forced", token = "")
|
258 |
+
|
259 |
+
# Just LoRA adapters
|
260 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
|
261 |
+
if False: model.push_to_hub_merged("Test_Lora", tokenizer, save_method = "lora", token = "")
|