|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig,AutoConfig
|
|
import time
|
|
import torch
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
import random
|
|
from datasets import load_dataset
|
|
from transformers import TrainingArguments
|
|
from trl import SFTTrainer
|
|
from peft import LoraConfig
|
|
|
|
from torch.nn import CrossEntropyLoss
|
|
torch.autograd.set_detect_anomaly(True)
|
|
random_seed = 42
|
|
torch.manual_seed(random_seed)
|
|
random.seed(random_seed)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
n_ahead_talk_global = 4
|
|
n_passes_global = 2
|
|
n_ahead_global = 8
|
|
n_examples = 0
|
|
|
|
def model_init(params):
|
|
original = False
|
|
if params is None:
|
|
params = {}
|
|
else:
|
|
params = params.params
|
|
|
|
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
|
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
|
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
|
gumbel_temperature = params.get("gumbel_temperature", 1)
|
|
use_start_thought_token = params.get("use_start_thought_token", True)
|
|
use_end_thought_token = params.get("use_end_thought_token", True)
|
|
include_policy_loss = params.get("include_policy_loss", True)
|
|
gumbel_detach = params.get("gumbel_detach", True)
|
|
merged_talk_heads = params.get("merged_talk_heads", True)
|
|
residual_think_head = params.get("residual_think_head", False)
|
|
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
|
|
|
model_id = "LeroyDyer/_Spydaz_Web_AI_V2_Aligned"
|
|
tokenizer_id = model_id
|
|
print("Loading model")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
|
max_thoughts=n_ahead + n_ahead_talk + 1,
|
|
merged_talk_heads=merged_talk_heads,
|
|
merged_lm_and_talk_heads=False,
|
|
merged_lm_and_think_heads=True,
|
|
use_concat_talk_head=True,
|
|
use_shallow_think=True,
|
|
use_shallow_talk=False,
|
|
use_complex_think_head=False,
|
|
use_complex_talk_head=True,
|
|
use_weighted_talk_head=True,
|
|
trust_remote_code=True,
|
|
device_map="auto",
|
|
)
|
|
print("Loaded model")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
special_tokens_to_add = []
|
|
if model.use_start_thought_token:
|
|
special_tokens_to_add.append("<|startthought|>")
|
|
if model.use_end_thought_token:
|
|
special_tokens_to_add.append("<|endthought|>")
|
|
if special_tokens_to_add:
|
|
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
model.tokenizer = tokenizer
|
|
for name, module in model.named_modules():
|
|
if "embed" in name:
|
|
print(module, flush=True)
|
|
|
|
model.gumbel_detach = gumbel_detach
|
|
model.include_policy_loss = include_policy_loss
|
|
model.use_end_thought_token = use_end_thought_token
|
|
model.use_start_thought_token = use_start_thought_token
|
|
model.n_ahead = n_ahead
|
|
model.n_ahead_talk = n_ahead_talk
|
|
model.n_passes = n_passes
|
|
model.residual_think_head = residual_think_head
|
|
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
|
model.gumbel_temperature = gumbel_temperature
|
|
model.original_mode = original
|
|
model.config_params = params
|
|
return model
|
|
model,tokenizer = model_init(None)
|
|
tokenizer.save_pretrained("IpretrainedModel")
|
|
model.save_pretrained("IpretrainedModel")
|
|
|
|
|
|
|
|
|
|
peft_config = LoraConfig(
|
|
r = 128,
|
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
|
"gate_proj", "up_proj", "down_proj","lm_head", "embed_tokens"],
|
|
lora_alpha = 32,
|
|
lora_dropout = 0,
|
|
bias = "none",
|
|
use_dora=True,
|
|
)
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig
|
|
from datasets import load_dataset
|
|
from transformers import TrainingArguments
|
|
from trl import SFTTrainer
|
|
from peft import LoraConfig
|
|
|
|
|
|
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
|
|
|
### Instruction:
|
|
{}
|
|
|
|
### Input:
|
|
{}
|
|
|
|
### Response:
|
|
{}"""
|
|
EOS_TOKEN = tokenizer.eos_token
|
|
def formatting_prompts_func(examples):
|
|
instructions = examples["instruction"]
|
|
inputs = examples["input"]
|
|
outputs = examples["output"]
|
|
texts = []
|
|
for instruction, input, output in zip(instructions, inputs, outputs):
|
|
|
|
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
|
texts.append(text)
|
|
return { "text" : texts, }
|
|
pass
|
|
dataset = load_dataset("gate369/Alpaca-Star", split = "train[:2000]")
|
|
dataset = dataset.shuffle(seed=3704)
|
|
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
|
|
|
model
|
|
model.train
|
|
max_seq_length = 32000
|
|
training_args = TrainingArguments(
|
|
output_dir="./out",
|
|
num_train_epochs=3,
|
|
per_device_train_batch_size=1,
|
|
gradient_checkpointing=False,
|
|
gradient_accumulation_steps=8,
|
|
optim="lion_32bit",
|
|
logging_steps=1,
|
|
save_strategy="steps",
|
|
save_steps=300,
|
|
max_steps=1000,
|
|
bf16=True,
|
|
tf32=False,
|
|
learning_rate=6e-05,
|
|
max_grad_norm=0.3,
|
|
warmup_ratio=0.06,
|
|
lr_scheduler_type="cosine",
|
|
push_to_hub=False,
|
|
|
|
)
|
|
trainer = SFTTrainer(
|
|
args=training_args,
|
|
train_dataset=dataset,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
max_seq_length=max_seq_length,
|
|
dataset_text_field="text",
|
|
peft_config=peft_config,
|
|
)
|
|
trainer.train()
|
|
|
|
|
|
tokenizer.save_pretrained("SFTTrainerModel")
|
|
model.save_pretrained("SFTTrainerModel")
|
|
|
|
|
|
import os
|
|
import huggingface_hub
|
|
from huggingface_hub import notebook_login
|
|
from huggingface_hub import create_repo, HfApi
|
|
from huggingface_hub import hf_hub_download
|
|
from huggingface_hub import create_repo, HfApi
|
|
from huggingface_hub import snapshot_download
|
|
|
|
MODEL_NAME = "_Spydaz_Web_AI_MistralStar"
|
|
Folderinput = "SFTTrainerModel"
|
|
WRITE_TOKEN = ""
|
|
username = "LeroyDyer"
|
|
huggingface_hub.login(WRITE_TOKEN)
|
|
api = HfApi(token=WRITE_TOKEN)
|
|
|
|
api.create_repo(
|
|
repo_id = f"{username}/{MODEL_NAME}",
|
|
repo_type="model",
|
|
exist_ok=True,
|
|
)
|
|
|
|
api.upload_folder(
|
|
repo_id = f"{username}/{MODEL_NAME}",
|
|
folder_path = Folderinput
|
|
) |