--- tags: - generated_from_trainer model-index: - name: first results: [] datasets: - oscar-corpus/oscar language: - de pipeline_tag: feature-extraction --- # first This model is a fine-tuned version of [longformer-gottbert-base-8192-aw512-](https://huggingface.co./longformer-8192-aw512-gottbert-base) on the a 500 million token subset of the german parts of the OSCAR dataset. It achieves the following results on the custom evaluation set: - Loss: 1.4981 ## Model description The weights of the model are initialized from the german version of Roberta [gottbert-base](https://huggingface.co./uklfr/gottbert-base). The local attention windows have a fixed size of 512 tokens across all layers. The maximum sequence length is 8192. ## Intended uses & limitations Longformer models enable processing long texts using a mixture of local attention on each subword token and task specific global attention on a subset of the tokens. ## Training and evaluation data The [OSCAR](https://oscar-corpus.com) dataset is freely avaible corpus of filtered web texts from the Common Crawl in various languages. We used the 2017 version of the dataset. ## Training procedure The model was trained with masked language modeling for 3 epochs on a customly created 500 million tokens subset of the german proportion of the [OSCAR](https://oscar-corpus.com) dataset. It was validated using 5% of the original subset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5636 | 0.1 | 500 | 2.2399 | | 2.0426 | 0.2 | 1000 | 1.8841 | | 1.9653 | 0.3 | 1500 | 1.7807 | | 1.9422 | 0.4 | 2000 | 1.7206 | | 1.9323 | 0.49 | 2500 | 1.6800 | | 1.7587 | 0.59 | 3000 | 1.6507 | | 1.7239 | 0.69 | 3500 | 1.6316 | | 1.7452 | 0.79 | 4000 | 1.6137 | | 1.7415 | 0.89 | 4500 | 1.5983 | | 1.7733 | 0.99 | 5000 | 1.5830 | | 1.7656 | 1.09 | 5500 | 1.5735 | | 1.6543 | 1.19 | 6000 | 1.5643 | | 1.7131 | 1.28 | 6500 | 1.5546 | | 1.6456 | 1.38 | 7000 | 1.5503 | | 1.716 | 1.48 | 7500 | 1.5422 | | 1.806 | 1.58 | 8000 | 1.5377 | | 1.8407 | 1.68 | 8500 | 1.5327 | | 1.6371 | 1.78 | 9000 | 1.5278 | | 1.6453 | 1.88 | 9500 | 1.5231 | | 1.7754 | 1.98 | 10000 | 1.5214 | | 1.7695 | 2.08 | 10500 | 1.5165 | | 1.7109 | 2.17 | 11000 | 1.5138 | | 1.6992 | 2.27 | 11500 | 1.5107 | | 1.6707 | 2.37 | 12000 | 1.5097 | | 1.6835 | 2.47 | 12500 | 1.5040 | | 1.7171 | 2.57 | 13000 | 1.5041 | | 1.7257 | 2.67 | 13500 | 1.4990 | | 1.6287 | 2.77 | 14000 | 1.5017 | | 1.7737 | 2.87 | 14500 | 1.4983 | | 1.4002 | 2.96 | 15000 | 1.4992 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3