Commit
·
278b236
1
Parent(s):
fcf805a
Update README.md
Browse files
README.md
CHANGED
@@ -7,21 +7,37 @@ tags:
|
|
7 |
- text-classification
|
8 |
model_format: pickle
|
9 |
model_file: legalis-scikit.pkl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# Model description
|
13 |
|
14 |
-
[
|
15 |
|
16 |
## Intended uses & limitations
|
17 |
|
18 |
-
|
19 |
|
20 |
-
##
|
21 |
|
22 |
-
[
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
<details>
|
27 |
<summary> Click to expand </summary>
|
@@ -73,7 +89,7 @@ model_file: legalis-scikit.pkl
|
|
73 |
|
74 |
### Model Plot
|
75 |
|
76 |
-
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding:
|
77 |
|
78 |
## Evaluation Results
|
79 |
|
@@ -82,48 +98,14 @@ model_file: legalis-scikit.pkl
|
|
82 |
| accuracy | 0.664286 |
|
83 |
| f1 score | 0.664286 |
|
84 |
|
85 |
-
# How to Get Started with the Model
|
86 |
-
|
87 |
-
[More Information Needed]
|
88 |
|
89 |
# Model Card Authors
|
90 |
|
91 |
-
This model card
|
92 |
-
|
93 |
-
[More Information Needed]
|
94 |
-
|
95 |
-
# Model Card Contact
|
96 |
|
97 |
-
|
98 |
-
[
|
99 |
|
100 |
# Citation
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
**BibTeX:**
|
105 |
-
```
|
106 |
-
[More Information Needed]
|
107 |
-
```
|
108 |
-
|
109 |
-
# get_started_code
|
110 |
-
|
111 |
-
import pickle
|
112 |
-
with open(dtc_pkl_filename, 'rb') as file:
|
113 |
-
clf = pickle.load(file)
|
114 |
-
|
115 |
-
# model_card_authors
|
116 |
-
|
117 |
-
LennardZuendorf
|
118 |
-
|
119 |
-
# limitations
|
120 |
-
|
121 |
-
This model is not ready to be used in production.
|
122 |
-
|
123 |
-
# model_description
|
124 |
-
|
125 |
-
This is a RandomForestClassifier model trained a dataset of legal cases to predict the outcome as a binary value.
|
126 |
-
|
127 |
-
# eval_method
|
128 |
-
|
129 |
-
The model is evaluated using test split, on accuracy and F1 score with macro average.
|
|
|
7 |
- text-classification
|
8 |
model_format: pickle
|
9 |
model_file: legalis-scikit.pkl
|
10 |
+
datasets:
|
11 |
+
- LennardZuendorf/legalis
|
12 |
+
language:
|
13 |
+
- de
|
14 |
+
metrics:
|
15 |
+
- accuracy
|
16 |
+
- f1
|
17 |
---
|
18 |
|
19 |
# Model description
|
20 |
|
21 |
+
This is a tuned random forest classifiert, trained on a processed dataset of 2800 German court cases (see [legalis dataset](https://huggingface.co/datasets/LennardZuendorf/legalis)). It predicts the winner (defended/"Verklagt*r" or plaintiff/"Kläger*in") of a court case based on facts provided (in German).
|
22 |
|
23 |
## Intended uses & limitations
|
24 |
|
25 |
+
- This model was created as part of a university project and should be considered highly experimental.
|
26 |
|
27 |
+
## get started with the model
|
28 |
|
29 |
+
Try out the hosted Interference UI or the [Huggingface Space](https://huggingface.co/spaces/LennardZuendorf/legalis)
|
30 |
|
31 |
+
```
|
32 |
+
import pickle
|
33 |
+
with open(dtc_pkl_filename, 'rb') as file:
|
34 |
+
clf = pickle.load(file)
|
35 |
+
```
|
36 |
+
|
37 |
+
|
38 |
+
### The modelHyperparameters
|
39 |
+
|
40 |
+
- The Classifier was tuned with scikit's cv search method, the pipeline used a CountVectorizer with common German stopwords.
|
41 |
|
42 |
<details>
|
43 |
<summary> Click to expand </summary>
|
|
|
89 |
|
90 |
### Model Plot
|
91 |
|
92 |
+
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 5;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('count',CountVectorizer(ngram_range=(1, 3),stop_words=['aber', 'alle', 'allem', 'allen','aller', 'alles', 'als', 'also','am', 'an', 'ander', 'andere','anderem', 'anderen', 'anderer','anderes', 'anderm', 'andern','anderr', 'anders', 'auch', 'auf','aus', 'bei', 'bin', 'bis', 'bist','da', 'damit', 'dann', ...])),('clf',RandomForestClassifier(min_samples_split=5, random_state=0))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('count',CountVectorizer(ngram_range=(1, 3),stop_words=['aber', 'alle', 'allem', 'allen','aller', 'alles', 'als', 'also','am', 'an', 'ander', 'andere','anderem', 'anderen', 'anderer','anderes', 'anderm', 'andern','anderr', 'anders', 'auch', 'auf','aus', 'bei', 'bin', 'bis', 'bist','da', 'damit', 'dann', ...])),('clf',RandomForestClassifier(min_samples_split=5, random_state=0))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">CountVectorizer</label><div class="sk-toggleable__content"><pre>CountVectorizer(ngram_range=(1, 3),stop_words=['aber', 'alle', 'allem', 'allen', 'aller', 'alles','als', 'also', 'am', 'an', 'ander', 'andere','anderem', 'anderen', 'anderer', 'anderes','anderm', 'andern', 'anderr', 'anders', 'auch','auf', 'aus', 'bei', 'bin', 'bis', 'bist', 'da','damit', 'dann', ...])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(min_samples_split=5, random_state=0)</pre></div></div></div></div></div></div></div>
|
93 |
|
94 |
## Evaluation Results
|
95 |
|
|
|
98 |
| accuracy | 0.664286 |
|
99 |
| f1 score | 0.664286 |
|
100 |
|
|
|
|
|
|
|
101 |
|
102 |
# Model Card Authors
|
103 |
|
104 |
+
This model card and the model itself are written by following authors:
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
[@LennardZuendorf -HGF](https://huggingface.co/LennardZuendorf)
|
107 |
+
[@LennardZuendorf - Github](https://github.com/LennardZuendorf)
|
108 |
|
109 |
# Citation
|
110 |
|
111 |
+
See Dataset for Sources and refer to [Github](https://github.com/LennardZuendorf/uniArchive-legalis) for collection of all files.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|