w11wo commited on
Commit
b0be8a7
·
verified ·
1 Parent(s): 29a7fd3

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+ datasets:
10
+ - indonli
11
+ - indolem/indo_story_cloze
12
+ - unicamp-dl/mmarco
13
+ - miracl/miracl
14
+ - SEACrowd/wrete
15
+ - SEACrowd/indolem_ntp
16
+ - khalidalt/tydiqa-goldp
17
+ - SEACrowd/facqa
18
+ - indonesian-nlp/lfqa_id
19
+ - jakartaresearch/indoqa
20
+ - jakartaresearch/id-paraphrase-detection
21
+ ---
22
+
23
+ # LazarusNLP/all-indobert-base-v2
24
+
25
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
26
+
27
+ <!--- Describe your model here -->
28
+
29
+ ## Usage (Sentence-Transformers)
30
+
31
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
32
+
33
+ ```
34
+ pip install -U sentence-transformers
35
+ ```
36
+
37
+ Then you can use the model like this:
38
+
39
+ ```python
40
+ from sentence_transformers import SentenceTransformer
41
+ sentences = ["This is an example sentence", "Each sentence is converted"]
42
+
43
+ model = SentenceTransformer('LazarusNLP/all-indobert-base-v2')
44
+ embeddings = model.encode(sentences)
45
+ print(embeddings)
46
+ ```
47
+
48
+
49
+
50
+ ## Usage (HuggingFace Transformers)
51
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
52
+
53
+ ```python
54
+ from transformers import AutoTokenizer, AutoModel
55
+ import torch
56
+
57
+
58
+ #Mean Pooling - Take attention mask into account for correct averaging
59
+ def mean_pooling(model_output, attention_mask):
60
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
61
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
62
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
63
+
64
+
65
+ # Sentences we want sentence embeddings for
66
+ sentences = ['This is an example sentence', 'Each sentence is converted']
67
+
68
+ # Load model from HuggingFace Hub
69
+ tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indobert-base-v2')
70
+ model = AutoModel.from_pretrained('LazarusNLP/all-indobert-base-v2')
71
+
72
+ # Tokenize sentences
73
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
74
+
75
+ # Compute token embeddings
76
+ with torch.no_grad():
77
+ model_output = model(**encoded_input)
78
+
79
+ # Perform pooling. In this case, mean pooling.
80
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
81
+
82
+ print("Sentence embeddings:")
83
+ print(sentence_embeddings)
84
+ ```
85
+
86
+
87
+
88
+ ## Evaluation Results
89
+
90
+ <!--- Describe how your model was evaluated -->
91
+
92
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-indobert-base-v2)
93
+
94
+
95
+ ## Training
96
+ The model was trained with the parameters:
97
+
98
+ **DataLoader**:
99
+
100
+ `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 968 with parameters:
101
+ ```
102
+ {'batch_size': 'unknown'}
103
+ ```
104
+
105
+ **Loss**:
106
+
107
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
108
+ ```
109
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
110
+ ```
111
+
112
+ Parameters of the fit()-Method:
113
+ ```
114
+ {
115
+ "epochs": 5,
116
+ "evaluation_steps": 0,
117
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
118
+ "max_grad_norm": 1,
119
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
120
+ "optimizer_params": {
121
+ "eps": 1e-06,
122
+ "lr": 2e-05
123
+ },
124
+ "scheduler": "WarmupLinear",
125
+ "steps_per_epoch": null,
126
+ "warmup_steps": 484,
127
+ "weight_decay": 0.01
128
+ }
129
+ ```
130
+
131
+
132
+ ## Full Model Architecture
133
+ ```
134
+ SentenceTransformer(
135
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
136
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
137
+ )
138
+ ```
139
+
140
+ ## Citing & Authors
141
+
142
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "indobenchmark/indobert-base-p1",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.36.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.36.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ }
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e3450847151e452dffcedf47474a165357efaa54e2774c78cbd3932d606a957
3
+ size 497787752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff