--- license: mit ---

ใ€ICLR 2024 ๐Ÿ”ฅใ€‘LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment

If you like our project, please give us a star โญ on GitHub for latest update.
## ๐Ÿ“ฐ News * **[2024.01.27]** ๐Ÿ‘€๐Ÿ‘€๐Ÿ‘€ Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. * **[2024.01.16]** ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ Our LanguageBind has been accepted at ICLR 2024! We earn the score of 6(3)8(6)6(6)6(6) [here](https://openreview.net/forum?id=QmZKc7UZCy¬eId=OgsxQxAleA). * **[2023.12.15]** ๐Ÿ’ช๐Ÿ’ช๐Ÿ’ช We expand the ๐Ÿ’ฅ๐Ÿ’ฅ๐Ÿ’ฅ VIDAL dataset and now have **10M video-text data**. We launch **LanguageBind_Video 1.5**, checking our [model zoo](#-model-zoo). * **[2023.12.10]** We expand the ๐Ÿ’ฅ๐Ÿ’ฅ๐Ÿ’ฅ VIDAL dataset and now have **10M depth and 10M thermal data**. We are in the process of uploading thermal and depth data on [Hugging Face](https://huggingface.co./datasets/LanguageBind/VIDAL-Depth-Thermal) and expect the whole process to last 1-2 months. * **[2023.11.27]** ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ We have updated our [paper](https://arxiv.org/abs/2310.01852) with emergency zero-shot results., checking our โœจ [results](#emergency-results). * **[2023.11.26]** ๐Ÿ’ฅ๐Ÿ’ฅ๐Ÿ’ฅ We have open-sourced all textual sources and corresponding YouTube IDs [here](DATASETS.md). * **[2023.11.26]** ๐Ÿ“ฃ๐Ÿ“ฃ๐Ÿ“ฃ We have open-sourced fully fine-tuned **Video & Audio**, achieving improved performance once again, checking our [model zoo](#-model-zoo). * **[2023.11.22]** We are about to release a fully fine-tuned version, and the **HUGE** version is currently undergoing training. * **[2023.11.21]** ๐Ÿ’ฅ We are releasing sample data in [DATASETS.md](DATASETS.md) so that individuals who are interested can further modify the code to train it on their own data. * **[2023.11.20]** ๐Ÿš€๐Ÿš€๐Ÿš€ [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) builds a large visual-language model to achieve ๐ŸŽ‰SOTA performances based on LanguageBind encoders. * **[2023.10.23]** ๐ŸŽถ LanguageBind-Audio achieves ๐ŸŽ‰๐ŸŽ‰๐ŸŽ‰**state-of-the-art (SOTA) performance on 5 datasets**, checking our โœจ [results](#multiple-modalities)! * **[2023.10.14]** ๐Ÿ˜ฑ Released a stronger LanguageBind-Video, checking our โœจ [results](#video-language)! The video checkpoint **have updated** on Huggingface Model Hub! * **[2023.10.10]** We provide sample data, which can be found in [assets](assets), and [emergency zero-shot usage](#emergency-zero-shot) is described. * **[2023.10.07]** The checkpoints are available on ๐Ÿค— [Huggingface Model](https://huggingface.co./LanguageBind). * **[2023.10.04]** Code and [demo](https://huggingface.co./spaces/LanguageBind/LanguageBind) are available now! Welcome to **watch** ๐Ÿ‘€ this repository for the latest updates. ## ๐Ÿ˜ฎ Highlights ### ๐Ÿ’ก High performance, but NO intermediate modality required LanguageBind is a **language-centric** multimodal pretraining approach, **taking the language as the bind across different modalities** because the language modality is well-explored and contains rich semantics. * The following first figure shows the architecture of LanguageBind. LanguageBind can be easily extended to segmentation, detection tasks, and potentially to unlimited modalities. ### โšก๏ธ A multimodal, fully aligned and voluminous dataset We propose **VIDAL-10M**, **10 Million data** with **V**ideo, **I**nfrared, **D**epth, **A**udio and their corresponding **L**anguage, which greatly expands the data beyond visual modalities. * The second figure shows our proposed VIDAL-10M dataset, which includes five modalities: video, infrared, depth, audio, and language. ### ๐Ÿ”ฅ Multi-view enhanced description for training We make multi-view enhancements to language. We produce multi-view description that combines **meta-data**, **spatial**, and **temporal** to greatly enhance the semantic information of the language. In addition we further **enhance the language with ChatGPT** to create a good semantic space for each modality aligned language. ## ๐Ÿค— Demo * **Local demo.** Highly recommend trying out our web demo, which incorporates all features currently supported by LanguageBind. ```bash python gradio_app.py ``` * **Online demo.** We provide the [online demo](https://huggingface.co./spaces/LanguageBind/LanguageBind) in Huggingface Spaces. In this demo, you can calculate the similarity of modalities to language, such as audio-to-language, video-to-language, and depth-to-image. ## ๐Ÿ› ๏ธ Requirements and Installation * Python >= 3.8 * Pytorch >= 1.13.1 * CUDA Version >= 11.6 * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/LanguageBind cd LanguageBind pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` ## ๐Ÿณ Model Zoo The names in the table represent different encoder models. For example, `LanguageBind/LanguageBind_Video_FT` represents the fully fine-tuned version, while `LanguageBind/LanguageBind_Video` represents the LoRA-tuned version. You can freely replace them in the recommended [API usage](#-api). We recommend using the fully fine-tuned version, as it offers stronger performance.
ModalityLoRA tuningFine-tuning
VideoLanguageBind_VideoLanguageBind_Video_FT
AudioLanguageBind_AudioLanguageBind_Audio_FT
DepthLanguageBind_Depth-
ThermalLanguageBind_Thermal-
VersionTuningModel sizeNum_framesHF LinkMSR-VTTDiDeMoActivityNetMSVD
LanguageBind_VideoLoRALarge8Link42.637.835.152.2
LanguageBind_Video_FTFull-tuningLarge8Link42.738.136.953.5
LanguageBind_Video_V1.5_FTFull-tuningLarge8Link42.839.738.454.1
LanguageBind_Video_V1.5_FTFull-tuningLarge12Coming soon
LanguageBind_Video_Huge_V1.5_FTFull-tuningHuge8Link44.839.941.053.7
LanguageBind_Video_Huge_V1.5_FTFull-tuningHuge12Coming soon
## ๐Ÿค– API **We open source all modalities preprocessing code.** If you want to load the model (e.g. ```LanguageBind/LanguageBind_Thermal```) from the model hub on Huggingface or on local, you can use the following code snippets! ### Inference for Multi-modal Binding We have provided some sample datasets in [assets](assets) to quickly see how languagebind works. ```python import torch from languagebind import LanguageBind, to_device, transform_dict, LanguageBindImageTokenizer if __name__ == '__main__': device = 'cuda:0' device = torch.device(device) clip_type = { 'video': 'LanguageBind_Video_FT', # also LanguageBind_Video 'audio': 'LanguageBind_Audio_FT', # also LanguageBind_Audio 'thermal': 'LanguageBind_Thermal', 'image': 'LanguageBind_Image', 'depth': 'LanguageBind_Depth', } model = LanguageBind(clip_type=clip_type, cache_dir='./cache_dir') model = model.to(device) model.eval() pretrained_ckpt = f'lb203/LanguageBind_Image' tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir') modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type.keys()} image = ['assets/image/0.jpg', 'assets/image/1.jpg'] audio = ['assets/audio/0.wav', 'assets/audio/1.wav'] video = ['assets/video/0.mp4', 'assets/video/1.mp4'] depth = ['assets/depth/0.png', 'assets/depth/1.png'] thermal = ['assets/thermal/0.jpg', 'assets/thermal/1.jpg'] language = ["Training a parakeet to climb up a ladder.", 'A lion climbing a tree to catch a monkey.'] inputs = { 'image': to_device(modality_transform['image'](image), device), 'video': to_device(modality_transform['video'](video), device), 'audio': to_device(modality_transform['audio'](audio), device), 'depth': to_device(modality_transform['depth'](depth), device), 'thermal': to_device(modality_transform['thermal'](thermal), device), } inputs['language'] = to_device(tokenizer(language, max_length=77, padding='max_length', truncation=True, return_tensors='pt'), device) with torch.no_grad(): embeddings = model(inputs) print("Video x Text: \n", torch.softmax(embeddings['video'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Image x Text: \n", torch.softmax(embeddings['image'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Depth x Text: \n", torch.softmax(embeddings['depth'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Audio x Text: \n", torch.softmax(embeddings['audio'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Thermal x Text: \n", torch.softmax(embeddings['thermal'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) ``` Then returns the following result. ```bash Video x Text: [[9.9989331e-01 1.0667283e-04] [1.3255903e-03 9.9867439e-01]] Image x Text: [[9.9990666e-01 9.3292067e-05] [4.6132666e-08 1.0000000e+00]] Depth x Text: [[0.9954276 0.00457235] [0.12042473 0.8795753 ]] Audio x Text: [[0.97634876 0.02365119] [0.02917843 0.97082156]] Thermal x Text: [[0.9482511 0.0517489 ] [0.48746133 0.5125386 ]] ``` ### Emergency zero-shot Since languagebind binds each modality together, we also found the **emergency zero-shot**. It's very simple to use. ```python print("Video x Audio: \n", torch.softmax(embeddings['video'] @ embeddings['audio'].T, dim=-1).detach().cpu().numpy()) print("Image x Depth: \n", torch.softmax(embeddings['image'] @ embeddings['depth'].T, dim=-1).detach().cpu().numpy()) print("Image x Thermal: \n", torch.softmax(embeddings['image'] @ embeddings['thermal'].T, dim=-1).detach().cpu().numpy()) ``` Then, you will get: ``` Video x Audio: [[1.0000000e+00 0.0000000e+00] [3.1150486e-32 1.0000000e+00]] Image x Depth: [[1. 0.] [0. 1.]] Image x Thermal: [[1. 0.] [0. 1.]] ``` ### Different branches for X-Language task Additionally, LanguageBind can be **disassembled into different branches** to handle different tasks. Note that we do not train Image, which just initialize from OpenCLIP. #### Thermal ```python import torch from languagebind import LanguageBindThermal, LanguageBindThermalTokenizer, LanguageBindThermalProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Thermal' model = LanguageBindThermal.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindThermalTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') thermal_process = LanguageBindThermalProcessor(model.config, tokenizer) model.eval() data = thermal_process([r"your/thermal.jpg"], ['your text'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Depth ```python import torch from languagebind import LanguageBindDepth, LanguageBindDepthTokenizer, LanguageBindDepthProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Depth' model = LanguageBindDepth.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindDepthTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') depth_process = LanguageBindDepthProcessor(model.config, tokenizer) model.eval() data = depth_process([r"your/depth.png"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Video ```python import torch from languagebind import LanguageBindVideo, LanguageBindVideoTokenizer, LanguageBindVideoProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Video_FT' # also 'LanguageBind/LanguageBind_Video' model = LanguageBindVideo.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindVideoTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') video_process = LanguageBindVideoProcessor(model.config, tokenizer) model.eval() data = video_process(["your/video.mp4"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Audio ```python import torch from languagebind import LanguageBindAudio, LanguageBindAudioTokenizer, LanguageBindAudioProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Audio_FT' # also 'LanguageBind/LanguageBind_Audio' model = LanguageBindAudio.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindAudioTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') audio_process = LanguageBindAudioProcessor(model.config, tokenizer) model.eval() data = audio_process([r"your/audio.wav"], ['your audio.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Image Note that our image encoder is the same as OpenCLIP. **Not** as fine-tuned as other modalities. ```python import torch from languagebind import LanguageBindImage, LanguageBindImageTokenizer, LanguageBindImageProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Image' model = LanguageBindImage.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') image_process = LanguageBindImageProcessor(model.config, tokenizer) model.eval() data = image_process([r"your/image.jpg"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` ## ๐Ÿ’ฅ VIDAL-10M The datasets is in [DATASETS.md](DATASETS.md). ## ๐Ÿ—๏ธ Training & Validating The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). ## ๐Ÿ‘ Acknowledgement * [OpenCLIP](https://github.com/mlfoundations/open_clip) An open source pretraining framework. * [CLIP4Clip](https://github.com/ArrowLuo/CLIP4Clip) An open source Video-Text retrieval framework. * [sRGB-TIR](https://github.com/rpmsnu/sRGB-TIR) An open source framework to generate infrared (thermal) images. * [GLPN](https://github.com/vinvino02/GLPDepth) An open source framework to generate depth images. ## ๐Ÿ”’ License * The majority of this project is released under the MIT license as found in the [LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/LICENSE) file. * The dataset of this project is released under the CC-BY-NC 4.0 license as found in the [DATASET_LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/DATASET_LICENSE) file. ## โœ๏ธ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Bin Zhu and Bin Lin and Munan Ning and Yang Yan and Jiaxi Cui and Wang HongFa and Yatian Pang and Wenhao Jiang and Junwu Zhang and Zongwei Li and Cai Wan Zhang and Zhifeng Li and Wei Liu and Li Yuan}, year={2023}, eprint={2310.01852}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## โœจ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/LanguageBind&type=Date)](https://star-history.com/#PKU-YuanGroup/LanguageBind&Date) ## ๐Ÿค Contributors