louis030195
commited on
Commit
•
fe556ee
1
Parent(s):
f263a51
first commit
Browse files- all_results.json +14 -0
- config.json +39 -0
- eval_results.json +9 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- runs/Dec18_17-45-49_louis-gpu/1639845963.6867917/events.out.tfevents.1639845963.louis-gpu.3745350.1 +3 -0
- runs/Dec18_17-45-49_louis-gpu/events.out.tfevents.1639845963.louis-gpu.3745350.0 +3 -0
- runs/Dec18_17-45-49_louis-gpu/events.out.tfevents.1639868204.louis-gpu.3745350.2 +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- train_results.json +8 -0
- trainer_state.json +813 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +453 -0
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 400.0,
|
3 |
+
"eval_loss": 4.94140625,
|
4 |
+
"eval_runtime": 3.7873,
|
5 |
+
"eval_samples": 258,
|
6 |
+
"eval_samples_per_second": 68.123,
|
7 |
+
"eval_steps_per_second": 8.713,
|
8 |
+
"perplexity": 139.96693973881514,
|
9 |
+
"train_loss": 0.4328666927939967,
|
10 |
+
"train_runtime": 22235.2418,
|
11 |
+
"train_samples": 603,
|
12 |
+
"train_samples_per_second": 10.848,
|
13 |
+
"train_steps_per_second": 0.684
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "gpt2",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2LMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"bos_token_id": 50256,
|
9 |
+
"embd_pdrop": 0.1,
|
10 |
+
"eos_token_id": 50256,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"layer_norm_epsilon": 1e-05,
|
13 |
+
"model_type": "gpt2",
|
14 |
+
"n_ctx": 1024,
|
15 |
+
"n_embd": 768,
|
16 |
+
"n_head": 12,
|
17 |
+
"n_inner": null,
|
18 |
+
"n_layer": 12,
|
19 |
+
"n_positions": 1024,
|
20 |
+
"reorder_and_upcast_attn": false,
|
21 |
+
"resid_pdrop": 0.1,
|
22 |
+
"scale_attn_by_inverse_layer_idx": false,
|
23 |
+
"scale_attn_weights": true,
|
24 |
+
"summary_activation": null,
|
25 |
+
"summary_first_dropout": 0.1,
|
26 |
+
"summary_proj_to_labels": true,
|
27 |
+
"summary_type": "cls_index",
|
28 |
+
"summary_use_proj": true,
|
29 |
+
"task_specific_params": {
|
30 |
+
"text-generation": {
|
31 |
+
"do_sample": true,
|
32 |
+
"max_length": 50
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"torch_dtype": "float16",
|
36 |
+
"transformers_version": "4.13.0",
|
37 |
+
"use_cache": false,
|
38 |
+
"vocab_size": 50257
|
39 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 400.0,
|
3 |
+
"eval_loss": 4.94140625,
|
4 |
+
"eval_runtime": 3.7873,
|
5 |
+
"eval_samples": 258,
|
6 |
+
"eval_samples_per_second": 68.123,
|
7 |
+
"eval_steps_per_second": 8.713,
|
8 |
+
"perplexity": 139.96693973881514
|
9 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bd85b148ef6d5f2ea91cf65ea6ac8daaa7d88454616d84e7ba068352ca9c48b
|
3 |
+
size 261495703
|
runs/Dec18_17-45-49_louis-gpu/1639845963.6867917/events.out.tfevents.1639845963.louis-gpu.3745350.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d948efad1252c97027797802079c99099782cae89c1630fcb9004ec4f17b291
|
3 |
+
size 4679
|
runs/Dec18_17-45-49_louis-gpu/events.out.tfevents.1639845963.louis-gpu.3745350.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ca8ac72d52221b7613f16a8a090f22d5822ba7f69420f5a31134d69cb07eb5e
|
3 |
+
size 29150
|
runs/Dec18_17-45-49_louis-gpu/events.out.tfevents.1639868204.louis-gpu.3745350.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7036de84b16ccde7834779e0940820e8d4fa71b7f79ad177f33011d5a1307c75
|
3 |
+
size 311
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2", "tokenizer_class": "GPT2Tokenizer"}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 400.0,
|
3 |
+
"train_loss": 0.4328666927939967,
|
4 |
+
"train_runtime": 22235.2418,
|
5 |
+
"train_samples": 603,
|
6 |
+
"train_samples_per_second": 10.848,
|
7 |
+
"train_steps_per_second": 0.684
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 400.0,
|
5 |
+
"global_step": 15200,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 5.26,
|
12 |
+
"eval_loss": 1.7080078125,
|
13 |
+
"eval_runtime": 3.7763,
|
14 |
+
"eval_samples_per_second": 68.321,
|
15 |
+
"eval_steps_per_second": 8.739,
|
16 |
+
"step": 200
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 10.53,
|
20 |
+
"eval_loss": 1.7001953125,
|
21 |
+
"eval_runtime": 3.7858,
|
22 |
+
"eval_samples_per_second": 68.149,
|
23 |
+
"eval_steps_per_second": 8.717,
|
24 |
+
"step": 400
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 13.16,
|
28 |
+
"learning_rate": 5e-05,
|
29 |
+
"loss": 1.671,
|
30 |
+
"step": 500
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 15.79,
|
34 |
+
"eval_loss": 1.7138671875,
|
35 |
+
"eval_runtime": 3.7865,
|
36 |
+
"eval_samples_per_second": 68.137,
|
37 |
+
"eval_steps_per_second": 8.715,
|
38 |
+
"step": 600
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 21.05,
|
42 |
+
"eval_loss": 1.744140625,
|
43 |
+
"eval_runtime": 3.7879,
|
44 |
+
"eval_samples_per_second": 68.112,
|
45 |
+
"eval_steps_per_second": 8.712,
|
46 |
+
"step": 800
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 26.32,
|
50 |
+
"learning_rate": 5e-05,
|
51 |
+
"loss": 1.4438,
|
52 |
+
"step": 1000
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 26.32,
|
56 |
+
"eval_loss": 1.794921875,
|
57 |
+
"eval_runtime": 3.7869,
|
58 |
+
"eval_samples_per_second": 68.13,
|
59 |
+
"eval_steps_per_second": 8.714,
|
60 |
+
"step": 1000
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 31.58,
|
64 |
+
"eval_loss": 1.84375,
|
65 |
+
"eval_runtime": 3.7879,
|
66 |
+
"eval_samples_per_second": 68.112,
|
67 |
+
"eval_steps_per_second": 8.712,
|
68 |
+
"step": 1200
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 36.84,
|
72 |
+
"eval_loss": 1.896484375,
|
73 |
+
"eval_runtime": 3.7905,
|
74 |
+
"eval_samples_per_second": 68.066,
|
75 |
+
"eval_steps_per_second": 8.706,
|
76 |
+
"step": 1400
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 39.47,
|
80 |
+
"learning_rate": 5e-05,
|
81 |
+
"loss": 1.2806,
|
82 |
+
"step": 1500
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 42.11,
|
86 |
+
"eval_loss": 1.9619140625,
|
87 |
+
"eval_runtime": 3.7916,
|
88 |
+
"eval_samples_per_second": 68.044,
|
89 |
+
"eval_steps_per_second": 8.703,
|
90 |
+
"step": 1600
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 47.37,
|
94 |
+
"eval_loss": 2.01953125,
|
95 |
+
"eval_runtime": 3.7897,
|
96 |
+
"eval_samples_per_second": 68.08,
|
97 |
+
"eval_steps_per_second": 8.708,
|
98 |
+
"step": 1800
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 52.63,
|
102 |
+
"learning_rate": 5e-05,
|
103 |
+
"loss": 1.1433,
|
104 |
+
"step": 2000
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 52.63,
|
108 |
+
"eval_loss": 2.068359375,
|
109 |
+
"eval_runtime": 3.7891,
|
110 |
+
"eval_samples_per_second": 68.091,
|
111 |
+
"eval_steps_per_second": 8.709,
|
112 |
+
"step": 2000
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 57.89,
|
116 |
+
"eval_loss": 2.1171875,
|
117 |
+
"eval_runtime": 3.7902,
|
118 |
+
"eval_samples_per_second": 68.069,
|
119 |
+
"eval_steps_per_second": 8.707,
|
120 |
+
"step": 2200
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 63.16,
|
124 |
+
"eval_loss": 2.1953125,
|
125 |
+
"eval_runtime": 3.7898,
|
126 |
+
"eval_samples_per_second": 68.077,
|
127 |
+
"eval_steps_per_second": 8.708,
|
128 |
+
"step": 2400
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 65.79,
|
132 |
+
"learning_rate": 5e-05,
|
133 |
+
"loss": 1.027,
|
134 |
+
"step": 2500
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 68.42,
|
138 |
+
"eval_loss": 2.25,
|
139 |
+
"eval_runtime": 3.7881,
|
140 |
+
"eval_samples_per_second": 68.108,
|
141 |
+
"eval_steps_per_second": 8.711,
|
142 |
+
"step": 2600
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 73.68,
|
146 |
+
"eval_loss": 2.291015625,
|
147 |
+
"eval_runtime": 3.7876,
|
148 |
+
"eval_samples_per_second": 68.118,
|
149 |
+
"eval_steps_per_second": 8.713,
|
150 |
+
"step": 2800
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 78.95,
|
154 |
+
"learning_rate": 5e-05,
|
155 |
+
"loss": 0.9216,
|
156 |
+
"step": 3000
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 78.95,
|
160 |
+
"eval_loss": 2.34765625,
|
161 |
+
"eval_runtime": 3.7885,
|
162 |
+
"eval_samples_per_second": 68.101,
|
163 |
+
"eval_steps_per_second": 8.711,
|
164 |
+
"step": 3000
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 84.21,
|
168 |
+
"eval_loss": 2.423828125,
|
169 |
+
"eval_runtime": 3.7907,
|
170 |
+
"eval_samples_per_second": 68.062,
|
171 |
+
"eval_steps_per_second": 8.706,
|
172 |
+
"step": 3200
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 89.47,
|
176 |
+
"eval_loss": 2.482421875,
|
177 |
+
"eval_runtime": 3.7903,
|
178 |
+
"eval_samples_per_second": 68.068,
|
179 |
+
"eval_steps_per_second": 8.706,
|
180 |
+
"step": 3400
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 92.11,
|
184 |
+
"learning_rate": 5e-05,
|
185 |
+
"loss": 0.8209,
|
186 |
+
"step": 3500
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 94.74,
|
190 |
+
"eval_loss": 2.529296875,
|
191 |
+
"eval_runtime": 3.7863,
|
192 |
+
"eval_samples_per_second": 68.14,
|
193 |
+
"eval_steps_per_second": 8.716,
|
194 |
+
"step": 3600
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 100.0,
|
198 |
+
"eval_loss": 2.5859375,
|
199 |
+
"eval_runtime": 3.785,
|
200 |
+
"eval_samples_per_second": 68.164,
|
201 |
+
"eval_steps_per_second": 8.719,
|
202 |
+
"step": 3800
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 105.26,
|
206 |
+
"learning_rate": 5e-05,
|
207 |
+
"loss": 0.7231,
|
208 |
+
"step": 4000
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 105.26,
|
212 |
+
"eval_loss": 2.6640625,
|
213 |
+
"eval_runtime": 3.7856,
|
214 |
+
"eval_samples_per_second": 68.153,
|
215 |
+
"eval_steps_per_second": 8.717,
|
216 |
+
"step": 4000
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 110.53,
|
220 |
+
"eval_loss": 2.703125,
|
221 |
+
"eval_runtime": 3.7862,
|
222 |
+
"eval_samples_per_second": 68.142,
|
223 |
+
"eval_steps_per_second": 8.716,
|
224 |
+
"step": 4200
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 115.79,
|
228 |
+
"eval_loss": 2.78515625,
|
229 |
+
"eval_runtime": 3.7894,
|
230 |
+
"eval_samples_per_second": 68.084,
|
231 |
+
"eval_steps_per_second": 8.708,
|
232 |
+
"step": 4400
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 118.42,
|
236 |
+
"learning_rate": 5e-05,
|
237 |
+
"loss": 0.6281,
|
238 |
+
"step": 4500
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 121.05,
|
242 |
+
"eval_loss": 2.84375,
|
243 |
+
"eval_runtime": 3.7883,
|
244 |
+
"eval_samples_per_second": 68.105,
|
245 |
+
"eval_steps_per_second": 8.711,
|
246 |
+
"step": 4600
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 126.32,
|
250 |
+
"eval_loss": 2.921875,
|
251 |
+
"eval_runtime": 3.79,
|
252 |
+
"eval_samples_per_second": 68.074,
|
253 |
+
"eval_steps_per_second": 8.707,
|
254 |
+
"step": 4800
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 131.58,
|
258 |
+
"learning_rate": 5e-05,
|
259 |
+
"loss": 0.5384,
|
260 |
+
"step": 5000
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 131.58,
|
264 |
+
"eval_loss": 2.994140625,
|
265 |
+
"eval_runtime": 3.7895,
|
266 |
+
"eval_samples_per_second": 68.082,
|
267 |
+
"eval_steps_per_second": 8.708,
|
268 |
+
"step": 5000
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 136.84,
|
272 |
+
"eval_loss": 3.048828125,
|
273 |
+
"eval_runtime": 3.7912,
|
274 |
+
"eval_samples_per_second": 68.053,
|
275 |
+
"eval_steps_per_second": 8.704,
|
276 |
+
"step": 5200
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 142.11,
|
280 |
+
"eval_loss": 3.107421875,
|
281 |
+
"eval_runtime": 3.7872,
|
282 |
+
"eval_samples_per_second": 68.123,
|
283 |
+
"eval_steps_per_second": 8.713,
|
284 |
+
"step": 5400
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 144.74,
|
288 |
+
"learning_rate": 5e-05,
|
289 |
+
"loss": 0.4574,
|
290 |
+
"step": 5500
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 147.37,
|
294 |
+
"eval_loss": 3.169921875,
|
295 |
+
"eval_runtime": 3.7886,
|
296 |
+
"eval_samples_per_second": 68.1,
|
297 |
+
"eval_steps_per_second": 8.71,
|
298 |
+
"step": 5600
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 152.63,
|
302 |
+
"eval_loss": 3.2265625,
|
303 |
+
"eval_runtime": 3.7924,
|
304 |
+
"eval_samples_per_second": 68.03,
|
305 |
+
"eval_steps_per_second": 8.702,
|
306 |
+
"step": 5800
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 157.89,
|
310 |
+
"learning_rate": 5e-05,
|
311 |
+
"loss": 0.3848,
|
312 |
+
"step": 6000
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 157.89,
|
316 |
+
"eval_loss": 3.291015625,
|
317 |
+
"eval_runtime": 3.7859,
|
318 |
+
"eval_samples_per_second": 68.148,
|
319 |
+
"eval_steps_per_second": 8.717,
|
320 |
+
"step": 6000
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 163.16,
|
324 |
+
"eval_loss": 3.376953125,
|
325 |
+
"eval_runtime": 3.7886,
|
326 |
+
"eval_samples_per_second": 68.099,
|
327 |
+
"eval_steps_per_second": 8.71,
|
328 |
+
"step": 6200
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 168.42,
|
332 |
+
"eval_loss": 3.408203125,
|
333 |
+
"eval_runtime": 3.7885,
|
334 |
+
"eval_samples_per_second": 68.1,
|
335 |
+
"eval_steps_per_second": 8.71,
|
336 |
+
"step": 6400
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 171.05,
|
340 |
+
"learning_rate": 5e-05,
|
341 |
+
"loss": 0.3224,
|
342 |
+
"step": 6500
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 173.68,
|
346 |
+
"eval_loss": 3.4765625,
|
347 |
+
"eval_runtime": 3.7922,
|
348 |
+
"eval_samples_per_second": 68.034,
|
349 |
+
"eval_steps_per_second": 8.702,
|
350 |
+
"step": 6600
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 178.95,
|
354 |
+
"eval_loss": 3.529296875,
|
355 |
+
"eval_runtime": 3.7898,
|
356 |
+
"eval_samples_per_second": 68.077,
|
357 |
+
"eval_steps_per_second": 8.708,
|
358 |
+
"step": 6800
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"epoch": 184.21,
|
362 |
+
"learning_rate": 5e-05,
|
363 |
+
"loss": 0.2697,
|
364 |
+
"step": 7000
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"epoch": 184.21,
|
368 |
+
"eval_loss": 3.591796875,
|
369 |
+
"eval_runtime": 3.7854,
|
370 |
+
"eval_samples_per_second": 68.157,
|
371 |
+
"eval_steps_per_second": 8.718,
|
372 |
+
"step": 7000
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 189.47,
|
376 |
+
"eval_loss": 3.634765625,
|
377 |
+
"eval_runtime": 3.7918,
|
378 |
+
"eval_samples_per_second": 68.041,
|
379 |
+
"eval_steps_per_second": 8.703,
|
380 |
+
"step": 7200
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 194.74,
|
384 |
+
"eval_loss": 3.68359375,
|
385 |
+
"eval_runtime": 3.7891,
|
386 |
+
"eval_samples_per_second": 68.09,
|
387 |
+
"eval_steps_per_second": 8.709,
|
388 |
+
"step": 7400
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 197.37,
|
392 |
+
"learning_rate": 5e-05,
|
393 |
+
"loss": 0.2258,
|
394 |
+
"step": 7500
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 200.0,
|
398 |
+
"eval_loss": 3.7265625,
|
399 |
+
"eval_runtime": 3.7895,
|
400 |
+
"eval_samples_per_second": 68.083,
|
401 |
+
"eval_steps_per_second": 8.708,
|
402 |
+
"step": 7600
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 205.26,
|
406 |
+
"eval_loss": 3.79296875,
|
407 |
+
"eval_runtime": 3.7901,
|
408 |
+
"eval_samples_per_second": 68.073,
|
409 |
+
"eval_steps_per_second": 8.707,
|
410 |
+
"step": 7800
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 210.53,
|
414 |
+
"learning_rate": 5e-05,
|
415 |
+
"loss": 0.1893,
|
416 |
+
"step": 8000
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 210.53,
|
420 |
+
"eval_loss": 3.828125,
|
421 |
+
"eval_runtime": 3.7891,
|
422 |
+
"eval_samples_per_second": 68.09,
|
423 |
+
"eval_steps_per_second": 8.709,
|
424 |
+
"step": 8000
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 215.79,
|
428 |
+
"eval_loss": 3.880859375,
|
429 |
+
"eval_runtime": 3.7907,
|
430 |
+
"eval_samples_per_second": 68.062,
|
431 |
+
"eval_steps_per_second": 8.706,
|
432 |
+
"step": 8200
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 221.05,
|
436 |
+
"eval_loss": 3.923828125,
|
437 |
+
"eval_runtime": 3.7895,
|
438 |
+
"eval_samples_per_second": 68.082,
|
439 |
+
"eval_steps_per_second": 8.708,
|
440 |
+
"step": 8400
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 223.68,
|
444 |
+
"learning_rate": 5e-05,
|
445 |
+
"loss": 0.1602,
|
446 |
+
"step": 8500
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 226.32,
|
450 |
+
"eval_loss": 3.974609375,
|
451 |
+
"eval_runtime": 3.7894,
|
452 |
+
"eval_samples_per_second": 68.084,
|
453 |
+
"eval_steps_per_second": 8.708,
|
454 |
+
"step": 8600
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"epoch": 231.58,
|
458 |
+
"eval_loss": 4.00390625,
|
459 |
+
"eval_runtime": 3.7923,
|
460 |
+
"eval_samples_per_second": 68.032,
|
461 |
+
"eval_steps_per_second": 8.702,
|
462 |
+
"step": 8800
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 236.84,
|
466 |
+
"learning_rate": 5e-05,
|
467 |
+
"loss": 0.137,
|
468 |
+
"step": 9000
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 236.84,
|
472 |
+
"eval_loss": 4.046875,
|
473 |
+
"eval_runtime": 3.7922,
|
474 |
+
"eval_samples_per_second": 68.034,
|
475 |
+
"eval_steps_per_second": 8.702,
|
476 |
+
"step": 9000
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 242.11,
|
480 |
+
"eval_loss": 4.07421875,
|
481 |
+
"eval_runtime": 3.7901,
|
482 |
+
"eval_samples_per_second": 68.072,
|
483 |
+
"eval_steps_per_second": 8.707,
|
484 |
+
"step": 9200
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 247.37,
|
488 |
+
"eval_loss": 4.12109375,
|
489 |
+
"eval_runtime": 3.7896,
|
490 |
+
"eval_samples_per_second": 68.08,
|
491 |
+
"eval_steps_per_second": 8.708,
|
492 |
+
"step": 9400
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 250.0,
|
496 |
+
"learning_rate": 5e-05,
|
497 |
+
"loss": 0.1179,
|
498 |
+
"step": 9500
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 252.63,
|
502 |
+
"eval_loss": 4.15625,
|
503 |
+
"eval_runtime": 3.7912,
|
504 |
+
"eval_samples_per_second": 68.053,
|
505 |
+
"eval_steps_per_second": 8.704,
|
506 |
+
"step": 9600
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 257.89,
|
510 |
+
"eval_loss": 4.203125,
|
511 |
+
"eval_runtime": 3.7923,
|
512 |
+
"eval_samples_per_second": 68.032,
|
513 |
+
"eval_steps_per_second": 8.702,
|
514 |
+
"step": 9800
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 263.16,
|
518 |
+
"learning_rate": 5e-05,
|
519 |
+
"loss": 0.1024,
|
520 |
+
"step": 10000
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 263.16,
|
524 |
+
"eval_loss": 4.234375,
|
525 |
+
"eval_runtime": 3.7852,
|
526 |
+
"eval_samples_per_second": 68.159,
|
527 |
+
"eval_steps_per_second": 8.718,
|
528 |
+
"step": 10000
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 268.42,
|
532 |
+
"eval_loss": 4.2734375,
|
533 |
+
"eval_runtime": 3.7869,
|
534 |
+
"eval_samples_per_second": 68.129,
|
535 |
+
"eval_steps_per_second": 8.714,
|
536 |
+
"step": 10200
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 273.68,
|
540 |
+
"eval_loss": 4.3046875,
|
541 |
+
"eval_runtime": 3.7892,
|
542 |
+
"eval_samples_per_second": 68.088,
|
543 |
+
"eval_steps_per_second": 8.709,
|
544 |
+
"step": 10400
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 276.32,
|
548 |
+
"learning_rate": 5e-05,
|
549 |
+
"loss": 0.0901,
|
550 |
+
"step": 10500
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 278.95,
|
554 |
+
"eval_loss": 4.3125,
|
555 |
+
"eval_runtime": 3.7869,
|
556 |
+
"eval_samples_per_second": 68.129,
|
557 |
+
"eval_steps_per_second": 8.714,
|
558 |
+
"step": 10600
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 284.21,
|
562 |
+
"eval_loss": 4.375,
|
563 |
+
"eval_runtime": 3.7872,
|
564 |
+
"eval_samples_per_second": 68.125,
|
565 |
+
"eval_steps_per_second": 8.714,
|
566 |
+
"step": 10800
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 289.47,
|
570 |
+
"learning_rate": 5e-05,
|
571 |
+
"loss": 0.0796,
|
572 |
+
"step": 11000
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 289.47,
|
576 |
+
"eval_loss": 4.390625,
|
577 |
+
"eval_runtime": 3.7843,
|
578 |
+
"eval_samples_per_second": 68.177,
|
579 |
+
"eval_steps_per_second": 8.72,
|
580 |
+
"step": 11000
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 294.74,
|
584 |
+
"eval_loss": 4.4375,
|
585 |
+
"eval_runtime": 3.7881,
|
586 |
+
"eval_samples_per_second": 68.107,
|
587 |
+
"eval_steps_per_second": 8.711,
|
588 |
+
"step": 11200
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 300.0,
|
592 |
+
"eval_loss": 4.453125,
|
593 |
+
"eval_runtime": 3.7869,
|
594 |
+
"eval_samples_per_second": 68.129,
|
595 |
+
"eval_steps_per_second": 8.714,
|
596 |
+
"step": 11400
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 302.63,
|
600 |
+
"learning_rate": 5e-05,
|
601 |
+
"loss": 0.0706,
|
602 |
+
"step": 11500
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 305.26,
|
606 |
+
"eval_loss": 4.5078125,
|
607 |
+
"eval_runtime": 3.7854,
|
608 |
+
"eval_samples_per_second": 68.156,
|
609 |
+
"eval_steps_per_second": 8.718,
|
610 |
+
"step": 11600
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"epoch": 310.53,
|
614 |
+
"eval_loss": 4.515625,
|
615 |
+
"eval_runtime": 3.787,
|
616 |
+
"eval_samples_per_second": 68.128,
|
617 |
+
"eval_steps_per_second": 8.714,
|
618 |
+
"step": 11800
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 315.79,
|
622 |
+
"learning_rate": 5e-05,
|
623 |
+
"loss": 0.0631,
|
624 |
+
"step": 12000
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 315.79,
|
628 |
+
"eval_loss": 4.53515625,
|
629 |
+
"eval_runtime": 3.7837,
|
630 |
+
"eval_samples_per_second": 68.187,
|
631 |
+
"eval_steps_per_second": 8.722,
|
632 |
+
"step": 12000
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 321.05,
|
636 |
+
"eval_loss": 4.5859375,
|
637 |
+
"eval_runtime": 3.7869,
|
638 |
+
"eval_samples_per_second": 68.13,
|
639 |
+
"eval_steps_per_second": 8.714,
|
640 |
+
"step": 12200
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 326.32,
|
644 |
+
"eval_loss": 4.609375,
|
645 |
+
"eval_runtime": 3.788,
|
646 |
+
"eval_samples_per_second": 68.11,
|
647 |
+
"eval_steps_per_second": 8.712,
|
648 |
+
"step": 12400
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 328.95,
|
652 |
+
"learning_rate": 5e-05,
|
653 |
+
"loss": 0.0573,
|
654 |
+
"step": 12500
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 331.58,
|
658 |
+
"eval_loss": 4.63671875,
|
659 |
+
"eval_runtime": 3.7891,
|
660 |
+
"eval_samples_per_second": 68.09,
|
661 |
+
"eval_steps_per_second": 8.709,
|
662 |
+
"step": 12600
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 336.84,
|
666 |
+
"eval_loss": 4.63671875,
|
667 |
+
"eval_runtime": 3.7855,
|
668 |
+
"eval_samples_per_second": 68.154,
|
669 |
+
"eval_steps_per_second": 8.717,
|
670 |
+
"step": 12800
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 342.11,
|
674 |
+
"learning_rate": 5e-05,
|
675 |
+
"loss": 0.0521,
|
676 |
+
"step": 13000
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 342.11,
|
680 |
+
"eval_loss": 4.6640625,
|
681 |
+
"eval_runtime": 3.7838,
|
682 |
+
"eval_samples_per_second": 68.185,
|
683 |
+
"eval_steps_per_second": 8.721,
|
684 |
+
"step": 13000
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 347.37,
|
688 |
+
"eval_loss": 4.70703125,
|
689 |
+
"eval_runtime": 3.7834,
|
690 |
+
"eval_samples_per_second": 68.192,
|
691 |
+
"eval_steps_per_second": 8.722,
|
692 |
+
"step": 13200
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 352.63,
|
696 |
+
"eval_loss": 4.69921875,
|
697 |
+
"eval_runtime": 3.789,
|
698 |
+
"eval_samples_per_second": 68.092,
|
699 |
+
"eval_steps_per_second": 8.709,
|
700 |
+
"step": 13400
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 355.26,
|
704 |
+
"learning_rate": 5e-05,
|
705 |
+
"loss": 0.0475,
|
706 |
+
"step": 13500
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 357.89,
|
710 |
+
"eval_loss": 4.75390625,
|
711 |
+
"eval_runtime": 3.7901,
|
712 |
+
"eval_samples_per_second": 68.073,
|
713 |
+
"eval_steps_per_second": 8.707,
|
714 |
+
"step": 13600
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 363.16,
|
718 |
+
"eval_loss": 4.765625,
|
719 |
+
"eval_runtime": 3.7877,
|
720 |
+
"eval_samples_per_second": 68.116,
|
721 |
+
"eval_steps_per_second": 8.712,
|
722 |
+
"step": 13800
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 368.42,
|
726 |
+
"learning_rate": 5e-05,
|
727 |
+
"loss": 0.0437,
|
728 |
+
"step": 14000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 368.42,
|
732 |
+
"eval_loss": 4.80078125,
|
733 |
+
"eval_runtime": 3.7858,
|
734 |
+
"eval_samples_per_second": 68.15,
|
735 |
+
"eval_steps_per_second": 8.717,
|
736 |
+
"step": 14000
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 373.68,
|
740 |
+
"eval_loss": 4.83203125,
|
741 |
+
"eval_runtime": 3.7888,
|
742 |
+
"eval_samples_per_second": 68.095,
|
743 |
+
"eval_steps_per_second": 8.71,
|
744 |
+
"step": 14200
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 378.95,
|
748 |
+
"eval_loss": 4.8515625,
|
749 |
+
"eval_runtime": 3.7901,
|
750 |
+
"eval_samples_per_second": 68.073,
|
751 |
+
"eval_steps_per_second": 8.707,
|
752 |
+
"step": 14400
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 381.58,
|
756 |
+
"learning_rate": 5e-05,
|
757 |
+
"loss": 0.0399,
|
758 |
+
"step": 14500
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 384.21,
|
762 |
+
"eval_loss": 4.86328125,
|
763 |
+
"eval_runtime": 3.7938,
|
764 |
+
"eval_samples_per_second": 68.006,
|
765 |
+
"eval_steps_per_second": 8.698,
|
766 |
+
"step": 14600
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 389.47,
|
770 |
+
"eval_loss": 4.89453125,
|
771 |
+
"eval_runtime": 3.7887,
|
772 |
+
"eval_samples_per_second": 68.098,
|
773 |
+
"eval_steps_per_second": 8.71,
|
774 |
+
"step": 14800
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 394.74,
|
778 |
+
"learning_rate": 5e-05,
|
779 |
+
"loss": 0.0367,
|
780 |
+
"step": 15000
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 394.74,
|
784 |
+
"eval_loss": 4.90625,
|
785 |
+
"eval_runtime": 3.7864,
|
786 |
+
"eval_samples_per_second": 68.138,
|
787 |
+
"eval_steps_per_second": 8.715,
|
788 |
+
"step": 15000
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 400.0,
|
792 |
+
"eval_loss": 4.94140625,
|
793 |
+
"eval_runtime": 3.791,
|
794 |
+
"eval_samples_per_second": 68.057,
|
795 |
+
"eval_steps_per_second": 8.705,
|
796 |
+
"step": 15200
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 400.0,
|
800 |
+
"step": 15200,
|
801 |
+
"total_flos": 1.2604727427386573e+17,
|
802 |
+
"train_loss": 0.4328666927939967,
|
803 |
+
"train_runtime": 22235.2418,
|
804 |
+
"train_samples_per_second": 10.848,
|
805 |
+
"train_steps_per_second": 0.684
|
806 |
+
}
|
807 |
+
],
|
808 |
+
"max_steps": 15200,
|
809 |
+
"num_train_epochs": 400,
|
810 |
+
"total_flos": 1.2604727427386573e+17,
|
811 |
+
"trial_name": null,
|
812 |
+
"trial_params": null
|
813 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a669d4b7a2fb08f2edacbf4cd42cf41502c9f9b962efa190cdc49ccce3537cef
|
3 |
+
size 3823
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
from collections import OrderedDict
|
16 |
+
|
17 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
18 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
19 |
+
import deepspeed
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
|
22 |
+
debug = 0
|
23 |
+
|
24 |
+
# load to cpu
|
25 |
+
device = torch.device('cpu')
|
26 |
+
|
27 |
+
|
28 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
29 |
+
if not os.path.isdir(checkpoint_dir):
|
30 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
31 |
+
|
32 |
+
# there should be only one file
|
33 |
+
if zero_stage == 2:
|
34 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
35 |
+
elif zero_stage == 3:
|
36 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
37 |
+
|
38 |
+
if not os.path.exists(file):
|
39 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
40 |
+
|
41 |
+
return file
|
42 |
+
|
43 |
+
|
44 |
+
def get_optim_files(checkpoint_dir):
|
45 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
46 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir, "*_optim_states.pt")))
|
47 |
+
|
48 |
+
if len(optim_files) == 0:
|
49 |
+
raise FileNotFoundError(
|
50 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
51 |
+
|
52 |
+
return optim_files
|
53 |
+
|
54 |
+
|
55 |
+
def parse_model_state(file):
|
56 |
+
state_dict = torch.load(file, map_location=device)
|
57 |
+
|
58 |
+
if "buffer_names" not in state_dict:
|
59 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
60 |
+
buffer_names = state_dict["buffer_names"]
|
61 |
+
if debug:
|
62 |
+
print("Found buffers:", buffer_names)
|
63 |
+
|
64 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
65 |
+
buffers = {
|
66 |
+
k: v.float()
|
67 |
+
for k,
|
68 |
+
v in state_dict["module"].items() if k in buffer_names
|
69 |
+
}
|
70 |
+
return buffers
|
71 |
+
|
72 |
+
|
73 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
74 |
+
|
75 |
+
total_files = len(files)
|
76 |
+
state_dicts = []
|
77 |
+
for f in files:
|
78 |
+
state_dicts.append(torch.load(f, map_location=device))
|
79 |
+
|
80 |
+
if not "zero_stage" in state_dicts[0]['optimizer_state_dict']:
|
81 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
82 |
+
zero_stage = state_dicts[0]['optimizer_state_dict']["zero_stage"]
|
83 |
+
world_size = state_dicts[0]['optimizer_state_dict']["partition_count"]
|
84 |
+
param_shapes = state_dicts[0]["param_shapes"]
|
85 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
86 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
87 |
+
# use the max of the partition_count to get the dp world_size.
|
88 |
+
|
89 |
+
if type(world_size) is list:
|
90 |
+
world_size = max(world_size)
|
91 |
+
|
92 |
+
if world_size != total_files:
|
93 |
+
raise ValueError(
|
94 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
95 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
96 |
+
)
|
97 |
+
|
98 |
+
# the groups are named differently in each stage
|
99 |
+
if zero_stage == 2:
|
100 |
+
fp32_groups_key = "single_partition_of_fp32_groups"
|
101 |
+
elif zero_stage == 3:
|
102 |
+
fp32_groups_key = "fp32_flat_groups"
|
103 |
+
else:
|
104 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
105 |
+
|
106 |
+
if zero_stage == 2:
|
107 |
+
fp32_flat_groups = [
|
108 |
+
state_dicts[i]['optimizer_state_dict'][fp32_groups_key]
|
109 |
+
for i in range(len(state_dicts))
|
110 |
+
]
|
111 |
+
elif zero_stage == 3:
|
112 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
113 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
114 |
+
#
|
115 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
116 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
117 |
+
|
118 |
+
fp32_flat_groups = [
|
119 |
+
torch.cat(state_dicts[i]['optimizer_state_dict'][fp32_groups_key],
|
120 |
+
0) for i in range(len(state_dicts))
|
121 |
+
]
|
122 |
+
|
123 |
+
return zero_stage, world_size, param_shapes, fp32_flat_groups
|
124 |
+
|
125 |
+
|
126 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
127 |
+
"""
|
128 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
129 |
+
|
130 |
+
Args:
|
131 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
132 |
+
|
133 |
+
"""
|
134 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
135 |
+
|
136 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
137 |
+
zero_stage, world_size, param_shapes, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
138 |
+
print(
|
139 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
140 |
+
|
141 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
142 |
+
buffers = parse_model_state(model_file)
|
143 |
+
|
144 |
+
if zero_stage == 2:
|
145 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
146 |
+
param_shapes,
|
147 |
+
fp32_flat_groups,
|
148 |
+
buffers)
|
149 |
+
elif zero_stage == 3:
|
150 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
151 |
+
param_shapes,
|
152 |
+
fp32_flat_groups,
|
153 |
+
buffers)
|
154 |
+
|
155 |
+
|
156 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
157 |
+
param_shapes,
|
158 |
+
fp32_flat_groups,
|
159 |
+
buffers):
|
160 |
+
|
161 |
+
# Reconstruction protocol:
|
162 |
+
#
|
163 |
+
# XXX: document this
|
164 |
+
|
165 |
+
if debug:
|
166 |
+
for i in range(world_size):
|
167 |
+
for j in range(len(fp32_flat_groups[0])):
|
168 |
+
print(f"fp32_flat_groups[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
169 |
+
|
170 |
+
# XXX: memory usage doubles here (zero2)
|
171 |
+
num_param_groups = len(fp32_flat_groups[0])
|
172 |
+
merged_single_partition_of_fp32_groups = []
|
173 |
+
for i in range(num_param_groups):
|
174 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
175 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
176 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
177 |
+
avail_numel = sum([
|
178 |
+
full_single_fp32_vector.numel()
|
179 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
180 |
+
])
|
181 |
+
|
182 |
+
if debug:
|
183 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
184 |
+
wanted_numel = sum(
|
185 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
186 |
+
# not asserting if there is a mismatch due to possible padding
|
187 |
+
print(f"Have {avail_numel} numels to process.")
|
188 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
189 |
+
|
190 |
+
state_dict = OrderedDict()
|
191 |
+
|
192 |
+
# buffers
|
193 |
+
state_dict.update(buffers)
|
194 |
+
if debug:
|
195 |
+
print(f"added {len(buffers)} buffers")
|
196 |
+
|
197 |
+
# params
|
198 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
199 |
+
# out-of-core computing solution
|
200 |
+
total_numel = 0
|
201 |
+
total_params = 0
|
202 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
203 |
+
offset = 0
|
204 |
+
avail_numel = full_single_fp32_vector.numel()
|
205 |
+
for name, shape in shapes.items():
|
206 |
+
|
207 |
+
unpartitioned_numel = shape.numel()
|
208 |
+
total_numel += unpartitioned_numel
|
209 |
+
total_params += 1
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
print(
|
213 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
214 |
+
)
|
215 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
216 |
+
0,
|
217 |
+
offset,
|
218 |
+
unpartitioned_numel).view(shape)
|
219 |
+
offset += unpartitioned_numel
|
220 |
+
|
221 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
222 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
223 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
224 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
225 |
+
align_to = 2 * world_size
|
226 |
+
|
227 |
+
def zero2_align(x):
|
228 |
+
return align_to * math.ceil(x / align_to)
|
229 |
+
|
230 |
+
if debug:
|
231 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
232 |
+
|
233 |
+
offset = zero2_align(offset)
|
234 |
+
avail_numel = zero2_align(avail_numel)
|
235 |
+
|
236 |
+
if debug:
|
237 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
238 |
+
|
239 |
+
# Sanity check
|
240 |
+
if offset != avail_numel:
|
241 |
+
raise ValueError(
|
242 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
243 |
+
|
244 |
+
print(
|
245 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
246 |
+
)
|
247 |
+
|
248 |
+
return state_dict
|
249 |
+
|
250 |
+
|
251 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
252 |
+
remainder = unpartitioned_numel % world_size
|
253 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
254 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
255 |
+
return partitioned_numel, padding_numel
|
256 |
+
|
257 |
+
|
258 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
259 |
+
param_shapes,
|
260 |
+
fp32_flat_groups,
|
261 |
+
buffers):
|
262 |
+
|
263 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
264 |
+
# param, re-consolidating each param, while dealing with padding if any
|
265 |
+
|
266 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
267 |
+
# merge list of dicts, preserving order
|
268 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
269 |
+
|
270 |
+
if debug:
|
271 |
+
for i in range(world_size):
|
272 |
+
print(f"fp32_flat_groups[{i}].shape={fp32_flat_groups[i].shape}")
|
273 |
+
|
274 |
+
wanted_params = len(param_shapes)
|
275 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
state_dict = OrderedDict()
|
281 |
+
|
282 |
+
# buffers
|
283 |
+
state_dict.update(buffers)
|
284 |
+
if debug:
|
285 |
+
print(f"added {len(buffers)} buffers")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
offset = 0
|
291 |
+
total_numel = 0
|
292 |
+
total_params = 0
|
293 |
+
for name, shape in param_shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel()
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(
|
303 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
304 |
+
)
|
305 |
+
|
306 |
+
# XXX: memory usage doubles here
|
307 |
+
state_dict[name] = torch.cat(
|
308 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
309 |
+
offset,
|
310 |
+
partitioned_numel)
|
311 |
+
for i in range(world_size)),
|
312 |
+
0).narrow(0,
|
313 |
+
0,
|
314 |
+
unpartitioned_numel).view(shape)
|
315 |
+
offset += partitioned_numel
|
316 |
+
|
317 |
+
offset *= world_size
|
318 |
+
|
319 |
+
# Sanity check
|
320 |
+
if offset != avail_numel:
|
321 |
+
raise ValueError(
|
322 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
323 |
+
|
324 |
+
print(
|
325 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
326 |
+
)
|
327 |
+
|
328 |
+
return state_dict
|
329 |
+
|
330 |
+
|
331 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
332 |
+
"""
|
333 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
334 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
335 |
+
via a model hub.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
339 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
340 |
+
|
341 |
+
Returns:
|
342 |
+
- pytorch ``state_dict``
|
343 |
+
|
344 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
345 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
346 |
+
the checkpoint.
|
347 |
+
|
348 |
+
A typical usage might be ::
|
349 |
+
|
350 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
351 |
+
# do the training and checkpoint saving
|
352 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
353 |
+
model = model.cpu() # move to cpu
|
354 |
+
model.load_state_dict(state_dict)
|
355 |
+
# submit to model hub or save the model to share with others
|
356 |
+
|
357 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
358 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
359 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
360 |
+
|
361 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
362 |
+
|
363 |
+
"""
|
364 |
+
if tag is None:
|
365 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
366 |
+
if os.path.isfile(latest_path):
|
367 |
+
with open(latest_path, 'r') as fd:
|
368 |
+
tag = fd.read().strip()
|
369 |
+
else:
|
370 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
371 |
+
|
372 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
373 |
+
|
374 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
375 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
376 |
+
|
377 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
378 |
+
|
379 |
+
|
380 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
381 |
+
"""
|
382 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
383 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
384 |
+
|
385 |
+
Args:
|
386 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
387 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
388 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
389 |
+
"""
|
390 |
+
|
391 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
392 |
+
print(f"Saving fp32 state dict to {output_file}")
|
393 |
+
torch.save(state_dict, output_file)
|
394 |
+
|
395 |
+
|
396 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
397 |
+
"""
|
398 |
+
1. Put the provided model to cpu
|
399 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
400 |
+
3. Load it into the provided model
|
401 |
+
|
402 |
+
Args:
|
403 |
+
- ``model``: the model object to update
|
404 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
405 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
406 |
+
|
407 |
+
Returns:
|
408 |
+
- ``model`: modified model
|
409 |
+
|
410 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
411 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
412 |
+
conveniently placed for you in the checkpoint folder.
|
413 |
+
|
414 |
+
A typical usage might be ::
|
415 |
+
|
416 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
417 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
418 |
+
# submit to model hub or save the model to share with others
|
419 |
+
|
420 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
421 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
422 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
423 |
+
|
424 |
+
"""
|
425 |
+
logger.info(f"Extracting fp32 weights")
|
426 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
427 |
+
|
428 |
+
logger.info(f"Overwriting model with fp32 weights")
|
429 |
+
model = model.cpu()
|
430 |
+
model.load_state_dict(state_dict, strict=False)
|
431 |
+
|
432 |
+
return model
|
433 |
+
|
434 |
+
|
435 |
+
if __name__ == "__main__":
|
436 |
+
|
437 |
+
parser = argparse.ArgumentParser()
|
438 |
+
parser.add_argument(
|
439 |
+
"checkpoint_dir",
|
440 |
+
type=str,
|
441 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
442 |
+
parser.add_argument(
|
443 |
+
"output_file",
|
444 |
+
type=str,
|
445 |
+
help=
|
446 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
447 |
+
)
|
448 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
449 |
+
args = parser.parse_args()
|
450 |
+
|
451 |
+
debug = args.debug
|
452 |
+
|
453 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|