Upload folder using huggingface_hub
Browse files- config.json +1 -1
- model.py +1198 -0
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"LlamaForTrainingFromOurNanotron"
|
4 |
],
|
5 |
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
model.py
ADDED
@@ -0,0 +1,1198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch LLaMa model."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
from torch.utils.checkpoint import CheckpointFunction
|
22 |
+
|
23 |
+
from nanotron import distributed as dist
|
24 |
+
from nanotron import logging
|
25 |
+
from nanotron.config import Config, LlamaConfig, ParallelismArgs
|
26 |
+
from nanotron.config.models_config import RandomInit, SpectralMupInit
|
27 |
+
from nanotron.generation.generate_store import AttachableStore
|
28 |
+
from nanotron.logging import log_rank
|
29 |
+
from nanotron.models import NanotronModel
|
30 |
+
from nanotron.nn.activations import ACT2FN
|
31 |
+
from nanotron.nn.layer_norm import TritonRMSNorm
|
32 |
+
from nanotron.parallel import ParallelContext
|
33 |
+
from nanotron.parallel.parameters import NanotronParameter
|
34 |
+
from nanotron.parallel.pipeline_parallel.block import PipelineBlock, TensorPointer
|
35 |
+
from nanotron.parallel.pipeline_parallel.p2p import P2P
|
36 |
+
from nanotron.parallel.tensor_parallel.functional import sharded_cross_entropy
|
37 |
+
from nanotron.parallel.tensor_parallel.nn import (
|
38 |
+
TensorParallelColumnLinear,
|
39 |
+
TensorParallelEmbedding,
|
40 |
+
TensorParallelLinearMode,
|
41 |
+
TensorParallelRowLinear,
|
42 |
+
)
|
43 |
+
from nanotron.random import RandomStates
|
44 |
+
from nanotron.scaling.parametrization import SpectralMupParametrizator, StandardParametrizator
|
45 |
+
from nanotron.utils import checkpoint_method
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
class RotaryEmbedding(nn.Module):
|
51 |
+
def __init__(self, dim: int, end: int, theta: float = 10000.0):
|
52 |
+
super().__init__()
|
53 |
+
assert dim % 2 == 0
|
54 |
+
self.dim = dim
|
55 |
+
self.end = end
|
56 |
+
self.theta = theta
|
57 |
+
# TODO @nouamane: Figure out why we can't set `DTypeInvariantTensor` ...
|
58 |
+
# TODO @thomasw21: Complex buffers break DDP, instead we store float and view them as complex
|
59 |
+
self.freqs_cis: torch.Tensor
|
60 |
+
self._initialized_buffer = False
|
61 |
+
|
62 |
+
def init_rotary_embeddings(self):
|
63 |
+
if self._initialized_buffer is True:
|
64 |
+
# Buffer if already initialized
|
65 |
+
return
|
66 |
+
self.register_buffer(
|
67 |
+
"freqs_cis",
|
68 |
+
torch.empty(self.end, self.dim // 2, 2, dtype=torch.float, device="cuda"),
|
69 |
+
persistent=False,
|
70 |
+
)
|
71 |
+
assert self.freqs_cis.device.type == "cuda"
|
72 |
+
# TODO @nouamane: One we figure out how to do the DTypeInvariantTensor, this can be removed and changed to an assert
|
73 |
+
if self.freqs_cis.dtype != torch.float:
|
74 |
+
self.freqs_cis = self.freqs_cis.to(torch.float)
|
75 |
+
assert self.freqs_cis.dtype == torch.float
|
76 |
+
freqs = 1.0 / (
|
77 |
+
self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float, device="cpu")[: (self.dim // 2)] / self.dim)
|
78 |
+
).to(
|
79 |
+
"cuda"
|
80 |
+
) # should be computed on CPU, otherwise different results with Transformers.
|
81 |
+
t = torch.arange(self.end, device="cuda")
|
82 |
+
freqs = torch.outer(t, freqs).float()
|
83 |
+
complex_freqs = torch.polar(torch.ones_like(freqs), freqs)
|
84 |
+
freqs = torch.view_as_real(complex_freqs)
|
85 |
+
self.freqs_cis.copy_(freqs)
|
86 |
+
self._initialized_buffer = True
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
x: torch.Tensor, # [batch_size, seq_length, num_heads, d_qk]
|
91 |
+
position_ids: Optional[torch.LongTensor], # [batch_size, seq_length]
|
92 |
+
):
|
93 |
+
batch_size, seq_length, num_heads, inner_dim = x.shape
|
94 |
+
while (
|
95 |
+
position_ids is not None and position_ids[-1, -1] >= self.end
|
96 |
+
) or seq_length >= self.end: # TODO @nouamane: check if this causes cpu-gpu sync
|
97 |
+
self.end *= 2
|
98 |
+
self._initialized_buffer = False
|
99 |
+
if self._initialized_buffer is False:
|
100 |
+
print(f"Initializing rotary embeddings with end={self.end}")
|
101 |
+
self.init_rotary_embeddings()
|
102 |
+
dtype = x.dtype
|
103 |
+
assert inner_dim % 2 == 0
|
104 |
+
x = x.view(
|
105 |
+
batch_size, seq_length, num_heads, inner_dim // 2, 2
|
106 |
+
) # [batch_size, q_length, num_heads, inner_dim]
|
107 |
+
if x.dtype == torch.bfloat16:
|
108 |
+
x = x.float()
|
109 |
+
complex_x = torch.view_as_complex(x) # [batch_size, q_length, num_heads, inner_dim // 2]
|
110 |
+
if position_ids is None:
|
111 |
+
freqs_cis = self.freqs_cis[None, :seq_length, None, :]
|
112 |
+
else:
|
113 |
+
# TODO(kunhao): Should None follow the num_heads dimension?
|
114 |
+
if position_ids[-1, -1] < 0 or position_ids[-1, -1] >= self.end: # Quick test hopefully
|
115 |
+
raise ValueError(f"Position ids must be in the range [0, {self.end}), but got {position_ids}")
|
116 |
+
freqs_cis = self.freqs_cis[position_ids][:, :, None, :]
|
117 |
+
complex_freqs = torch.view_as_complex(freqs_cis)
|
118 |
+
x_out = torch.view_as_real(complex_x * complex_freqs).view(batch_size, seq_length, num_heads, inner_dim)
|
119 |
+
return x_out.type(dtype)
|
120 |
+
|
121 |
+
|
122 |
+
## Copy from transformers. Non interleaved version of RoPE. Will be refactored later
|
123 |
+
def rotate_half(x):
|
124 |
+
"""Rotates half the hidden dims of the input."""
|
125 |
+
x1 = x[..., : x.shape[-1] // 2]
|
126 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
127 |
+
return torch.cat((-x2, x1), dim=-1)
|
128 |
+
|
129 |
+
|
130 |
+
class LlamaRotaryEmbedding(nn.Module):
|
131 |
+
def __init__(self, dim: int, end: int, theta: float = 500000.0):
|
132 |
+
super().__init__()
|
133 |
+
self.dim = dim
|
134 |
+
self.end = end
|
135 |
+
self.theta = theta
|
136 |
+
self.init_rotary_embeddings()
|
137 |
+
|
138 |
+
def init_rotary_embeddings(self):
|
139 |
+
inv_freq = 1.0 / (
|
140 |
+
self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float, device="cpu") / self.dim)
|
141 |
+
) # important to compute on CPU
|
142 |
+
self.register_buffer(
|
143 |
+
"inv_freq", torch.empty(self.dim // 2, dtype=torch.float, device="cuda"), persistent=False
|
144 |
+
)
|
145 |
+
self.inv_freq = self.inv_freq.to(
|
146 |
+
torch.float
|
147 |
+
) # make it float32 before copy to avoid precision loss during copy_
|
148 |
+
self.inv_freq.copy_(inv_freq)
|
149 |
+
|
150 |
+
@torch.no_grad()
|
151 |
+
def forward(
|
152 |
+
self,
|
153 |
+
x: torch.Tensor, # [batch_size, seq_length, num_heads, d_qk]
|
154 |
+
position_ids: Optional[torch.LongTensor], # [batch_size, seq_length]
|
155 |
+
):
|
156 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
157 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
158 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
159 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
160 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
161 |
+
device_type = x.device.type
|
162 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
163 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
164 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
165 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
166 |
+
cos = emb.cos()
|
167 |
+
sin = emb.sin()
|
168 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
169 |
+
|
170 |
+
def rotate_half(self, x):
|
171 |
+
"""Rotates half the hidden dims of the input."""
|
172 |
+
x1 = x[..., : x.shape[-1] // 2]
|
173 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
174 |
+
return torch.cat((-x2, x1), dim=-1)
|
175 |
+
|
176 |
+
def apply_rotary_pos_emb(self, q, k, cos, sin, unsqueeze_dim=2):
|
177 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
q (`torch.Tensor`): The query tensor.
|
181 |
+
k (`torch.Tensor`): The key tensor.
|
182 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
183 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
184 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
185 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
186 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
187 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
188 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
189 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
190 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
191 |
+
Returns:
|
192 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
193 |
+
"""
|
194 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
195 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
196 |
+
q_embed = (q * cos) + (self.rotate_half(q) * sin)
|
197 |
+
k_embed = (k * cos) + (self.rotate_half(k) * sin)
|
198 |
+
return q_embed, k_embed
|
199 |
+
|
200 |
+
|
201 |
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=2):
|
202 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
q (`torch.Tensor`): The query tensor.
|
206 |
+
k (`torch.Tensor`): The key tensor.
|
207 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
208 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
209 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
210 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
211 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
212 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
213 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
214 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
215 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
216 |
+
Returns:
|
217 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
218 |
+
"""
|
219 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
220 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
221 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
222 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
223 |
+
return q_embed, k_embed
|
224 |
+
|
225 |
+
|
226 |
+
class GLUActivation(nn.Module):
|
227 |
+
def __init__(self, act_fn_name: str):
|
228 |
+
super().__init__()
|
229 |
+
self.act = ACT2FN[act_fn_name]
|
230 |
+
|
231 |
+
def forward(self, merged_states: torch.Tensor):
|
232 |
+
gate_states, up_states = torch.split(merged_states, merged_states.shape[-1] // 2, dim=-1)
|
233 |
+
return self.act(gate_states) * up_states
|
234 |
+
|
235 |
+
|
236 |
+
class MLP(nn.Module):
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
config: LlamaConfig,
|
240 |
+
parallel_config: Optional[ParallelismArgs],
|
241 |
+
tp_pg: dist.ProcessGroup,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
|
245 |
+
# TODO @thomasw21: refactor so that we store that default in a single place.
|
246 |
+
tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
|
247 |
+
tp_linear_async_communication = (
|
248 |
+
parallel_config.tp_linear_async_communication if parallel_config is not None else False
|
249 |
+
)
|
250 |
+
|
251 |
+
gate_up_contiguous_chunks = (
|
252 |
+
config.intermediate_size, # shape of gate_linear
|
253 |
+
config.intermediate_size, # shape of up_linear
|
254 |
+
)
|
255 |
+
self.gate_up_proj = TensorParallelColumnLinear(
|
256 |
+
config.hidden_size,
|
257 |
+
2 * config.intermediate_size,
|
258 |
+
pg=tp_pg,
|
259 |
+
mode=tp_mode,
|
260 |
+
bias=False,
|
261 |
+
async_communication=tp_linear_async_communication,
|
262 |
+
contiguous_chunks=gate_up_contiguous_chunks,
|
263 |
+
tp_recompute_allgather=parallel_config.tp_recompute_allgather,
|
264 |
+
)
|
265 |
+
self.down_proj = TensorParallelRowLinear(
|
266 |
+
config.intermediate_size,
|
267 |
+
config.hidden_size,
|
268 |
+
pg=tp_pg,
|
269 |
+
mode=tp_mode,
|
270 |
+
bias=False,
|
271 |
+
async_communication=tp_linear_async_communication and tp_mode is TensorParallelLinearMode.REDUCE_SCATTER,
|
272 |
+
)
|
273 |
+
self.split_silu_mul = torch.compile(GLUActivation(config.hidden_act))
|
274 |
+
|
275 |
+
def forward(self, hidden_states): # [seq_length, batch_size, hidden_dim]
|
276 |
+
merged_states = self.gate_up_proj(hidden_states)
|
277 |
+
hidden_states = self.down_proj(self.split_silu_mul(merged_states))
|
278 |
+
return {"hidden_states": hidden_states}
|
279 |
+
|
280 |
+
|
281 |
+
class CoreAttention(nn.Module):
|
282 |
+
def __init__(self, config: LlamaConfig, parallel_config: Optional[ParallelismArgs], layer_idx: int):
|
283 |
+
super().__init__()
|
284 |
+
# TODO @thomasw21: GPT has a weird `d_kv` config which I'm guessing is essentically a `d_qkv`
|
285 |
+
assert (
|
286 |
+
config.hidden_size % config.num_attention_heads == 0
|
287 |
+
), f"Hidden size {config.hidden_size} must be divisible by number of attention heads {config.num_attention_heads}."
|
288 |
+
self.d_qk = config.hidden_size // config.num_attention_heads
|
289 |
+
self.d_v = config.hidden_size // config.num_attention_heads
|
290 |
+
self.is_using_mup = config.is_using_mup
|
291 |
+
|
292 |
+
self.checkpoint_attention = False # Because flash_attn already does checkpointing
|
293 |
+
|
294 |
+
@checkpoint_method(attr_name="checkpoint_attention")
|
295 |
+
def forward(
|
296 |
+
self,
|
297 |
+
query_states: torch.Tensor, # [batch_size * q_length, n_local_q_heads, inner_dim]
|
298 |
+
key_states: torch.Tensor, # [batch_size * kv_length, n_local_kv_heads, inner_dim]
|
299 |
+
value_states: torch.Tensor, # [batch_size * kv_length, n_local_kv_heads, inner_dim]
|
300 |
+
q_sequence_mask: torch.Tensor, # torch.BoolTensor [batch_size, q_length] (can be broadcasted to that size)
|
301 |
+
kv_sequence_mask: torch.Tensor, # torch.BoolTensor [batch_size, kv_length] (can be broadcasted to that size)
|
302 |
+
):
|
303 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
304 |
+
|
305 |
+
# TODO @thomasw21: Compute once, instead of computing for each layers.
|
306 |
+
cu_seqlens_q = torch.zeros((q_sequence_mask.shape[0] + 1), dtype=torch.int32, device=query_states.device)
|
307 |
+
cu_seqlens_k = torch.zeros((kv_sequence_mask.shape[0] + 1), dtype=torch.int32, device=query_states.device)
|
308 |
+
torch.cumsum(q_sequence_mask.sum(-1, dtype=torch.int32), dim=0, dtype=torch.int32, out=cu_seqlens_q[1:])
|
309 |
+
torch.cumsum(kv_sequence_mask.sum(-1, dtype=torch.int32), dim=0, dtype=torch.int32, out=cu_seqlens_k[1:])
|
310 |
+
|
311 |
+
# TODO(kunhao): flash attn's causal means that the query can only attend to the keys before it. This is not
|
312 |
+
# what we want if we are using kv cache. This is a hack as we always have q_length == 1 when using kv cache.
|
313 |
+
causal = False if q_sequence_mask.shape[1] == 1 else True
|
314 |
+
|
315 |
+
# NOTE: this scale is for µTransfer,
|
316 |
+
# in SP, we use sqrt(1/d_h)
|
317 |
+
softmax_scale = 1 / query_states.shape[-1] if self.is_using_mup else None
|
318 |
+
attn_output = flash_attn_varlen_func(
|
319 |
+
q=query_states,
|
320 |
+
k=key_states,
|
321 |
+
v=value_states,
|
322 |
+
cu_seqlens_q=cu_seqlens_q,
|
323 |
+
cu_seqlens_k=cu_seqlens_k,
|
324 |
+
max_seqlen_q=q_sequence_mask.shape[1],
|
325 |
+
max_seqlen_k=kv_sequence_mask.shape[1],
|
326 |
+
dropout_p=0.0,
|
327 |
+
softmax_scale=softmax_scale,
|
328 |
+
causal=causal,
|
329 |
+
return_attn_probs=False,
|
330 |
+
)
|
331 |
+
|
332 |
+
return attn_output
|
333 |
+
|
334 |
+
|
335 |
+
def pad_to_right(tensor, mask, new_tensor=None):
|
336 |
+
"""Transform a left-padded tensor into a right-padded tensor. (Useful for prefilling key/value states)
|
337 |
+
Args:
|
338 |
+
tensor: (batch_size, seqlen, d1, d2)
|
339 |
+
mask: (batch_size, seqlen)
|
340 |
+
new_tensor: (batch_size, new_tensor_seqlen, d1, d2)
|
341 |
+
Returns:
|
342 |
+
new_tensor: (batch_size, new_tensor_seqlen, d1, d2)
|
343 |
+
right_padded_mask: (batch_size, seqlen)
|
344 |
+
"""
|
345 |
+
# First, we need to find the number of padding for each row
|
346 |
+
unpad_seqlens = mask.sum(1)
|
347 |
+
# Then, we need to find the maximum length of the tensor
|
348 |
+
max_seqlen = mask.shape[1]
|
349 |
+
# We can then create the indices to select the padded values
|
350 |
+
# The indices are the same for each row
|
351 |
+
indices = torch.arange(max_seqlen, device=mask.device)
|
352 |
+
# We can then create the mask for the padded values
|
353 |
+
right_padded_mask = indices < unpad_seqlens[:, None]
|
354 |
+
# We select the useful values
|
355 |
+
useful_values = tensor[mask]
|
356 |
+
# We create the new tensor (if not provided)
|
357 |
+
new_tensor = torch.zeros_like(tensor) if new_tensor is None else new_tensor
|
358 |
+
# We fill the new tensor with the useful values
|
359 |
+
new_tensor[:, : right_padded_mask.shape[1], :, :][right_padded_mask] = useful_values
|
360 |
+
return new_tensor, right_padded_mask
|
361 |
+
|
362 |
+
|
363 |
+
class CausalSelfAttention(nn.Module, AttachableStore):
|
364 |
+
def __init__(
|
365 |
+
self,
|
366 |
+
config: LlamaConfig,
|
367 |
+
parallel_config: Optional[ParallelismArgs],
|
368 |
+
tp_pg: dist.ProcessGroup,
|
369 |
+
layer_idx: int,
|
370 |
+
):
|
371 |
+
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
|
372 |
+
|
373 |
+
super().__init__()
|
374 |
+
# Tensor parallel considerations: We split tensors along head dimension
|
375 |
+
assert (
|
376 |
+
config.num_attention_heads % tp_pg.size() == 0
|
377 |
+
), f"Number of attention heads ({config.num_attention_heads}) must be divisible by TP size ({tp_pg.size()})."
|
378 |
+
try:
|
379 |
+
assert (
|
380 |
+
config.num_key_value_heads % tp_pg.size() == 0
|
381 |
+
), f"Number of key/value heads ({config.num_key_value_heads}) must be divisible by TP size ({tp_pg.size()})."
|
382 |
+
except AttributeError:
|
383 |
+
log_rank(
|
384 |
+
"WARNING: num_key_value_heads not defined, assuming it is equal to num_attention_heads",
|
385 |
+
logger=logger,
|
386 |
+
level=logging.WARNING,
|
387 |
+
rank=0,
|
388 |
+
)
|
389 |
+
# If num_key_value_heads is not defined, we assume that it is equal to num_attention_heads
|
390 |
+
config.num_key_value_heads = config.num_attention_heads
|
391 |
+
assert (
|
392 |
+
config.num_attention_heads % config.num_key_value_heads == 0
|
393 |
+
), f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of key/value heads ({config.num_key_value_heads})."
|
394 |
+
self.n_local_q_heads = config.num_attention_heads // tp_pg.size()
|
395 |
+
self.n_local_kv_heads = config.num_key_value_heads // tp_pg.size()
|
396 |
+
self.n_repeats = config.num_attention_heads // config.num_key_value_heads
|
397 |
+
self.is_gqa = config.num_attention_heads != config.num_key_value_heads # Whether we are using GQA or not
|
398 |
+
self.d_qk = config.hidden_size // config.num_attention_heads
|
399 |
+
self.d_v = config.hidden_size // config.num_attention_heads
|
400 |
+
self.d_model = config.hidden_size
|
401 |
+
self.is_using_mup = config.is_using_mup
|
402 |
+
|
403 |
+
# TODO @thomasw21: refactor so that we store that default in a single place.
|
404 |
+
tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
|
405 |
+
tp_linear_async_communication = (
|
406 |
+
parallel_config.tp_linear_async_communication if parallel_config is not None else False
|
407 |
+
)
|
408 |
+
|
409 |
+
# build the slice config for self.qkv for save/load
|
410 |
+
# shard are done within the contiguous chunk
|
411 |
+
qkv_contiguous_chunks = (
|
412 |
+
config.num_attention_heads * self.d_qk, # shape of q
|
413 |
+
config.num_key_value_heads * self.d_qk, # shape of k
|
414 |
+
config.num_key_value_heads * self.d_qk, # shape of v
|
415 |
+
)
|
416 |
+
self.qkv_proj = TensorParallelColumnLinear(
|
417 |
+
self.d_model,
|
418 |
+
config.num_attention_heads * self.d_qk + 2 * config.num_key_value_heads * self.d_qk,
|
419 |
+
pg=tp_pg,
|
420 |
+
mode=tp_mode,
|
421 |
+
bias=False,
|
422 |
+
async_communication=tp_linear_async_communication,
|
423 |
+
contiguous_chunks=qkv_contiguous_chunks,
|
424 |
+
tp_recompute_allgather=parallel_config.tp_recompute_allgather,
|
425 |
+
)
|
426 |
+
# TODO(kunhao): We want to have only one version per device and not one version per layer.
|
427 |
+
|
428 |
+
if config.rope_interleaved:
|
429 |
+
self.rotary_embedding = RotaryEmbedding(
|
430 |
+
dim=self.d_qk,
|
431 |
+
end=config.max_position_embeddings,
|
432 |
+
theta=config.rope_theta,
|
433 |
+
)
|
434 |
+
else:
|
435 |
+
self.rotary_embedding = LlamaRotaryEmbedding(
|
436 |
+
dim=self.d_qk,
|
437 |
+
end=config.max_position_embeddings,
|
438 |
+
theta=config.rope_theta,
|
439 |
+
)
|
440 |
+
self.rope_interleaved = config.rope_interleaved
|
441 |
+
|
442 |
+
# NOTE: Only supported for training (TODO(fmom): position_ids not supported yet)
|
443 |
+
self.flash_rotary_embedding = FlashRotaryEmbedding(dim=self.d_qk, base=config.rope_theta, interleaved=config.rope_interleaved)
|
444 |
+
|
445 |
+
self.o_proj = TensorParallelRowLinear(
|
446 |
+
config.num_attention_heads * self.d_qk,
|
447 |
+
self.d_model,
|
448 |
+
pg=tp_pg,
|
449 |
+
mode=tp_mode,
|
450 |
+
bias=False,
|
451 |
+
async_communication=tp_linear_async_communication,
|
452 |
+
)
|
453 |
+
|
454 |
+
self.attention = CoreAttention(
|
455 |
+
config,
|
456 |
+
parallel_config=parallel_config,
|
457 |
+
layer_idx=layer_idx,
|
458 |
+
)
|
459 |
+
|
460 |
+
self.prefill_kv_len = (
|
461 |
+
config.max_position_embeddings
|
462 |
+
) # TODO @nouamane: compute based on free memory, because in rope we can surpass max_position_embeddings
|
463 |
+
|
464 |
+
def forward(
|
465 |
+
self,
|
466 |
+
hidden_states, # [seq_length, batch_size, hidden_size]
|
467 |
+
sequence_mask, # [batch_size, seq_length]
|
468 |
+
):
|
469 |
+
from flash_attn import bert_padding
|
470 |
+
from flash_attn.flash_attn_interface import (
|
471 |
+
flash_attn_varlen_func,
|
472 |
+
flash_attn_with_kvcache,
|
473 |
+
)
|
474 |
+
|
475 |
+
qkv_states = self.qkv_proj(
|
476 |
+
hidden_states
|
477 |
+
) # [seq_length, batch_size, n_local_q_heads * d_qk + 2 * n_local_kv_heads * d_qk]
|
478 |
+
q_length, batch_size, _ = qkv_states.shape
|
479 |
+
|
480 |
+
if self.is_gqa:
|
481 |
+
query_states, key_states, value_states = torch.split(
|
482 |
+
qkv_states,
|
483 |
+
[
|
484 |
+
self.n_local_q_heads * self.d_qk,
|
485 |
+
self.n_local_kv_heads * self.d_qk,
|
486 |
+
self.n_local_kv_heads * self.d_qk,
|
487 |
+
],
|
488 |
+
dim=-1,
|
489 |
+
)
|
490 |
+
|
491 |
+
query_states = (
|
492 |
+
query_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_q_heads, self.d_qk)
|
493 |
+
)
|
494 |
+
key_states = (
|
495 |
+
key_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_kv_heads, self.d_qk)
|
496 |
+
)
|
497 |
+
value_states = (
|
498 |
+
value_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_kv_heads, self.d_qk)
|
499 |
+
)
|
500 |
+
else:
|
501 |
+
query_states, key_states, value_states = (
|
502 |
+
qkv_states.view(q_length, batch_size, 3, self.n_local_q_heads, self.d_qk)
|
503 |
+
.permute(2, 1, 0, 3, 4)
|
504 |
+
.contiguous()
|
505 |
+
) # [3, batch_size, seq_length, n_local_q_heads, d_qk]
|
506 |
+
|
507 |
+
store = self.get_local_store()
|
508 |
+
if store is not None: # Inference case
|
509 |
+
# Double check that we use store only at inference time
|
510 |
+
assert key_states.requires_grad is False
|
511 |
+
assert value_states.requires_grad is False
|
512 |
+
if "position_offsets" in store:
|
513 |
+
old_position_offsets = store["position_offsets"]
|
514 |
+
position_ids = old_position_offsets[:, None] + sequence_mask
|
515 |
+
else:
|
516 |
+
position_ids = torch.cumsum(sequence_mask, dim=-1, dtype=torch.int32) - 1
|
517 |
+
position_offsets = position_ids[:, -1]
|
518 |
+
|
519 |
+
# Compute rotary embeddings
|
520 |
+
# Note: keep track of old rotary embedding end to check if we need to enlarge k_cache and v_cache
|
521 |
+
old_rotary_embed_end = self.rotary_embedding.end
|
522 |
+
if self.rope_interleaved:
|
523 |
+
query_states = self.rotary_embedding(query_states, position_ids=position_ids)
|
524 |
+
key_states = self.rotary_embedding(key_states, position_ids=position_ids)
|
525 |
+
else:
|
526 |
+
cos, sin = self.rotary_embedding(value_states, position_ids)
|
527 |
+
query_states, key_states = self.rotary_embedding.apply_rotary_pos_emb(
|
528 |
+
query_states, key_states, cos, sin
|
529 |
+
)
|
530 |
+
|
531 |
+
if "key" not in store:
|
532 |
+
# First inference iteration (Prefill)
|
533 |
+
# TODO @nouamane: support custom masking
|
534 |
+
# assert that [ False, False, False, False, True, True, True, True, True, True] is accepted
|
535 |
+
# but [ False, False, False, False, True, True, False, False, True, True] is not (can't mask in the middle of sequence)
|
536 |
+
assert ~(
|
537 |
+
sequence_mask[:, :-1] & (~sequence_mask[:, 1:]) # True is never followed by False
|
538 |
+
).any(), "Can't mask in the middle of sequence, please make sure that pads are at the left of the sequence if existing"
|
539 |
+
|
540 |
+
# preallocate k_cache, v_cache to self.prefill_kv_len
|
541 |
+
k_cache = torch.zeros(
|
542 |
+
(
|
543 |
+
batch_size,
|
544 |
+
self.prefill_kv_len,
|
545 |
+
self.n_local_kv_heads,
|
546 |
+
self.d_qk,
|
547 |
+
),
|
548 |
+
dtype=query_states.dtype,
|
549 |
+
device=query_states.device,
|
550 |
+
)
|
551 |
+
v_cache = torch.zeros(
|
552 |
+
(batch_size, self.prefill_kv_len, self.n_local_kv_heads, self.d_v),
|
553 |
+
dtype=query_states.dtype,
|
554 |
+
device=query_states.device,
|
555 |
+
)
|
556 |
+
# Remove pad tokens from key_states and concatenate samples in key_unpad
|
557 |
+
# cu_seqlens_k is the cumulative sequence lengths of key_states
|
558 |
+
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(
|
559 |
+
query_states,
|
560 |
+
sequence_mask,
|
561 |
+
)
|
562 |
+
(key_unpad, indices_k, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(
|
563 |
+
key_states, sequence_mask
|
564 |
+
)
|
565 |
+
(value_unpad, _, _, _) = bert_padding.unpad_input(value_states, sequence_mask)
|
566 |
+
|
567 |
+
# NOTE: this scale is for µTransfer,
|
568 |
+
# in SP, we use sqrt(1/d_h)
|
569 |
+
softmax_scale = 1 / query_states.shape[-1] if self.is_using_mup else None
|
570 |
+
output_unpad = flash_attn_varlen_func(
|
571 |
+
q=query_unpad, # (total_q, n_local_q_heads, d_qk)
|
572 |
+
k=key_unpad, # (total_kv, n_local_kv_heads, d_qk)
|
573 |
+
v=value_unpad, # (total_kv, n_local_kv_heads, d_v)
|
574 |
+
cu_seqlens_q=cu_seqlens_q,
|
575 |
+
cu_seqlens_k=cu_seqlens_k,
|
576 |
+
max_seqlen_q=max_seqlen_q,
|
577 |
+
max_seqlen_k=max_seqlen_k,
|
578 |
+
dropout_p=0.0,
|
579 |
+
softmax_scale=softmax_scale,
|
580 |
+
causal=True, # True in prefill phase, False in subsequent phases
|
581 |
+
return_attn_probs=False,
|
582 |
+
) # (total_unpadded, n_local_q_heads, d_v)
|
583 |
+
|
584 |
+
attention_output = bert_padding.pad_input(
|
585 |
+
output_unpad, indices_q, batch_size, q_length
|
586 |
+
) # (batch_size, q_length, n_local_q_heads, d_v)
|
587 |
+
|
588 |
+
pad_to_right(key_states, sequence_mask, new_tensor=k_cache)
|
589 |
+
pad_to_right(value_states, sequence_mask, new_tensor=v_cache)
|
590 |
+
|
591 |
+
else:
|
592 |
+
# Pull pre-computed key/value states
|
593 |
+
# Subsequent inference iterations (q_length=1)
|
594 |
+
k_cache = store["key"]
|
595 |
+
v_cache = store["value"]
|
596 |
+
|
597 |
+
# NOTE(fmom): According to flash_attn_with_kvcache, "If you pass in k / v, you must make sure that the cache is large enough to hold the new values"
|
598 |
+
# Since rotary embedding has changed (to enable larger context), we need to enlarge k_cache and v_cache
|
599 |
+
if self.rotary_embedding.end > old_rotary_embed_end:
|
600 |
+
k_cache = torch.cat(
|
601 |
+
[
|
602 |
+
k_cache,
|
603 |
+
torch.zeros(
|
604 |
+
(
|
605 |
+
batch_size,
|
606 |
+
self.rotary_embedding.end - old_rotary_embed_end,
|
607 |
+
self.n_local_kv_heads,
|
608 |
+
self.d_qk,
|
609 |
+
),
|
610 |
+
dtype=query_states.dtype,
|
611 |
+
device=query_states.device,
|
612 |
+
),
|
613 |
+
],
|
614 |
+
dim=1,
|
615 |
+
)
|
616 |
+
|
617 |
+
v_cache = torch.cat(
|
618 |
+
[
|
619 |
+
v_cache,
|
620 |
+
torch.zeros(
|
621 |
+
(
|
622 |
+
batch_size,
|
623 |
+
self.rotary_embedding.end - old_rotary_embed_end,
|
624 |
+
self.n_local_kv_heads,
|
625 |
+
self.d_v,
|
626 |
+
),
|
627 |
+
dtype=query_states.dtype,
|
628 |
+
device=query_states.device,
|
629 |
+
),
|
630 |
+
],
|
631 |
+
dim=1,
|
632 |
+
)
|
633 |
+
|
634 |
+
assert (
|
635 |
+
k_cache.shape[1] == self.rotary_embedding.end
|
636 |
+
), f"Cache size {k_cache.shape[1]} is smaller than rotary embedding end {self.rotary_embedding.end}"
|
637 |
+
assert (
|
638 |
+
v_cache.shape[1] == self.rotary_embedding.end
|
639 |
+
), f"Cache size {v_cache.shape[1]} is smaller than rotary embedding end {self.rotary_embedding.end}"
|
640 |
+
|
641 |
+
# [batch_size, seq_length, num_heads, d_qk]
|
642 |
+
query_states = query_states.view(
|
643 |
+
batch_size, q_length, self.n_local_q_heads, self.d_qk
|
644 |
+
) # [batch_size, q_length, self.n_heads, d_qk]
|
645 |
+
kv_length = key_states.shape[1]
|
646 |
+
key_states = key_states.view(
|
647 |
+
batch_size, kv_length, self.n_local_kv_heads, self.d_qk
|
648 |
+
) # [batch_size, kv_length, self.n_heads, d_qk]
|
649 |
+
value_states = value_states.view(
|
650 |
+
batch_size, kv_length, self.n_local_kv_heads, self.d_v
|
651 |
+
) # [batch_size, kv_length, self.n_heads, d_v]
|
652 |
+
|
653 |
+
# NOTE: this scale is for µTransfer,
|
654 |
+
# in SP, we use sqrt(1/d_h)
|
655 |
+
softmax_scale = 1 / query_states.shape[-1] if self.is_using_mup else None
|
656 |
+
attention_output = flash_attn_with_kvcache(
|
657 |
+
query_states,
|
658 |
+
k_cache,
|
659 |
+
v_cache,
|
660 |
+
key_states,
|
661 |
+
value_states,
|
662 |
+
rotary_cos=None,
|
663 |
+
rotary_sin=None,
|
664 |
+
# TODO @nouamane: seems like this doesn't help to indicate padding in (for first iteration it's just 0)
|
665 |
+
cache_seqlens=position_offsets.contiguous(),
|
666 |
+
softmax_scale=softmax_scale,
|
667 |
+
causal=True,
|
668 |
+
rotary_interleaved=False, # GPT-NeoX style
|
669 |
+
)
|
670 |
+
|
671 |
+
store.update(
|
672 |
+
{
|
673 |
+
"key": k_cache, # flash-attn has updated with new key_states using cache_seqlens
|
674 |
+
"value": v_cache,
|
675 |
+
"position_offsets": position_offsets,
|
676 |
+
}
|
677 |
+
)
|
678 |
+
|
679 |
+
else: # Training case
|
680 |
+
# Apply rotary embeddings to query/key states
|
681 |
+
# NOTE: The layout is different from models/llama.py which is [batch_size, num_heads, seq_length, d_qk]
|
682 |
+
# Here it is, [batch_size, seq_length, num_heads, d_qk]
|
683 |
+
# [2, batch_size, seq_length, num_heads, d_qk]
|
684 |
+
key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
|
685 |
+
# [batch_size, seq_length, 2, num_heads, d_qk]
|
686 |
+
key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
|
687 |
+
query_states, key_value_states = self.flash_rotary_embedding(query_states, kv=key_value_states)
|
688 |
+
# [batch_size, seq_length, num_heads, d_qk]
|
689 |
+
key_states, value_states = torch.split(key_value_states, 1, dim=2)
|
690 |
+
|
691 |
+
q_sequence_mask = sequence_mask
|
692 |
+
kv_sequence_mask = sequence_mask
|
693 |
+
|
694 |
+
kv_length = key_states.shape[1]
|
695 |
+
# [batch_size, seq_length, num_heads, d_qk]
|
696 |
+
# Shaping for use in `flash-attn` version of flash-attn: `flash_attn_unpadded_func`
|
697 |
+
query_states = query_states.view(
|
698 |
+
batch_size * q_length, self.n_local_q_heads, self.d_qk
|
699 |
+
) # [batch_size * q_length, self.n_heads, d_qk]
|
700 |
+
|
701 |
+
key_states = key_states.view(
|
702 |
+
batch_size * kv_length, self.n_local_kv_heads, self.d_qk
|
703 |
+
) # [batch_size * kv_length, self.n_heads, d_qk]
|
704 |
+
value_states = value_states.view(
|
705 |
+
batch_size * kv_length, self.n_local_kv_heads, self.d_v
|
706 |
+
) # [batch_size * kv_length, self.n_heads, d_v]
|
707 |
+
|
708 |
+
attention_output = self.attention(
|
709 |
+
query_states=query_states,
|
710 |
+
key_states=key_states,
|
711 |
+
value_states=value_states,
|
712 |
+
q_sequence_mask=q_sequence_mask,
|
713 |
+
kv_sequence_mask=kv_sequence_mask,
|
714 |
+
)
|
715 |
+
|
716 |
+
attention_output = (
|
717 |
+
attention_output.contiguous().view(batch_size, q_length, self.n_local_q_heads * self.d_v).transpose(0, 1)
|
718 |
+
)
|
719 |
+
output = self.o_proj(attention_output)
|
720 |
+
|
721 |
+
return {"hidden_states": output, "sequence_mask": sequence_mask}
|
722 |
+
|
723 |
+
|
724 |
+
class LlamaDecoderLayer(nn.Module):
|
725 |
+
def __init__(
|
726 |
+
self,
|
727 |
+
config: LlamaConfig,
|
728 |
+
parallel_config: Optional[ParallelismArgs],
|
729 |
+
tp_pg: dist.ProcessGroup,
|
730 |
+
layer_idx: int,
|
731 |
+
):
|
732 |
+
super().__init__()
|
733 |
+
self.input_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
734 |
+
self.attn = CausalSelfAttention(
|
735 |
+
config=config,
|
736 |
+
parallel_config=parallel_config,
|
737 |
+
tp_pg=tp_pg,
|
738 |
+
layer_idx=layer_idx,
|
739 |
+
)
|
740 |
+
|
741 |
+
self.post_attention_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
742 |
+
self.mlp = MLP(config=config, parallel_config=parallel_config, tp_pg=tp_pg)
|
743 |
+
|
744 |
+
self.recompute_layer = parallel_config.recompute_layer
|
745 |
+
|
746 |
+
def _core_forward(
|
747 |
+
self,
|
748 |
+
hidden_states: Union[torch.Tensor, TensorPointer],
|
749 |
+
sequence_mask: Union[torch.Tensor, TensorPointer],
|
750 |
+
) -> List[Union[torch.Tensor, TensorPointer]]:
|
751 |
+
residual = hidden_states
|
752 |
+
hidden_states = self.input_layernorm(hidden_states)
|
753 |
+
|
754 |
+
output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
755 |
+
hidden_states = output["hidden_states"]
|
756 |
+
hidden_states = hidden_states + residual
|
757 |
+
|
758 |
+
residual = hidden_states
|
759 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
760 |
+
hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
|
761 |
+
hidden_states = hidden_states + residual
|
762 |
+
|
763 |
+
return hidden_states, output["sequence_mask"]
|
764 |
+
|
765 |
+
def _checkpointed_forward(
|
766 |
+
self,
|
767 |
+
hidden_states: torch.Tensor,
|
768 |
+
sequence_mask: torch.Tensor,
|
769 |
+
) -> List[torch.Tensor]:
|
770 |
+
return CheckpointFunction.apply(self._core_forward, True, hidden_states, sequence_mask)
|
771 |
+
|
772 |
+
def forward(
|
773 |
+
self,
|
774 |
+
hidden_states: Union[torch.Tensor, TensorPointer],
|
775 |
+
sequence_mask: Union[torch.Tensor, TensorPointer],
|
776 |
+
) -> Dict[str, Union[torch.Tensor, TensorPointer]]:
|
777 |
+
|
778 |
+
if self.recompute_layer and not isinstance(hidden_states, TensorPointer):
|
779 |
+
hidden_states, sequence_mask = self._checkpointed_forward(hidden_states, sequence_mask)
|
780 |
+
else:
|
781 |
+
hidden_states, sequence_mask = self._core_forward(hidden_states, sequence_mask)
|
782 |
+
|
783 |
+
return {
|
784 |
+
"hidden_states": hidden_states,
|
785 |
+
"sequence_mask": sequence_mask,
|
786 |
+
}
|
787 |
+
|
788 |
+
|
789 |
+
class Embedding(nn.Module, AttachableStore):
|
790 |
+
def __init__(self, tp_pg: dist.ProcessGroup, config: LlamaConfig, parallel_config: Optional[ParallelismArgs]):
|
791 |
+
super().__init__()
|
792 |
+
self.token_embedding = TensorParallelEmbedding(
|
793 |
+
num_embeddings=config.vocab_size,
|
794 |
+
embedding_dim=config.hidden_size,
|
795 |
+
padding_idx=config.pad_token_id,
|
796 |
+
pg=tp_pg,
|
797 |
+
mode=parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE,
|
798 |
+
)
|
799 |
+
self.pg = tp_pg
|
800 |
+
|
801 |
+
def forward(self, input_ids: torch.Tensor, input_mask: torch.Tensor): # [batch_size, seq_length]
|
802 |
+
store = self.get_local_store()
|
803 |
+
if store is not None:
|
804 |
+
if "past_length" in store:
|
805 |
+
past_length = store["past_length"]
|
806 |
+
else:
|
807 |
+
past_length = torch.zeros(1, dtype=torch.long, device=input_ids.device).expand(input_ids.shape[0])
|
808 |
+
|
809 |
+
cumsum_mask = input_mask.cumsum(-1, dtype=torch.long)
|
810 |
+
# Store new past_length in store
|
811 |
+
store["past_length"] = past_length + cumsum_mask[:, -1]
|
812 |
+
|
813 |
+
# Format input in `[seq_length, batch_size]` to support high TP with low batch_size
|
814 |
+
input_ids = input_ids.transpose(0, 1)
|
815 |
+
input_embeds = self.token_embedding(input_ids)
|
816 |
+
return {"input_embeds": input_embeds}
|
817 |
+
|
818 |
+
|
819 |
+
class LlamaModel(nn.Module):
|
820 |
+
"""Build pipeline graph"""
|
821 |
+
|
822 |
+
def __init__(
|
823 |
+
self,
|
824 |
+
config: LlamaConfig,
|
825 |
+
parallel_context: ParallelContext,
|
826 |
+
parallel_config: Optional[ParallelismArgs],
|
827 |
+
):
|
828 |
+
super().__init__()
|
829 |
+
|
830 |
+
# Declare all the nodes
|
831 |
+
self.p2p = P2P(parallel_context.pp_pg, device=torch.device("cuda"))
|
832 |
+
self.config = config
|
833 |
+
self.parallel_config = parallel_config
|
834 |
+
self.parallel_context = parallel_context
|
835 |
+
self.tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
|
836 |
+
tp_linear_async_communication = (
|
837 |
+
parallel_config.tp_linear_async_communication if parallel_config is not None else False
|
838 |
+
)
|
839 |
+
|
840 |
+
self.token_position_embeddings = PipelineBlock(
|
841 |
+
p2p=self.p2p,
|
842 |
+
module_builder=Embedding,
|
843 |
+
module_kwargs={
|
844 |
+
"tp_pg": parallel_context.tp_pg,
|
845 |
+
"config": config,
|
846 |
+
"parallel_config": parallel_config,
|
847 |
+
},
|
848 |
+
module_input_keys={"input_ids", "input_mask"},
|
849 |
+
module_output_keys={"input_embeds"},
|
850 |
+
)
|
851 |
+
|
852 |
+
log_rank(f"Initialize RoPE Theta = {config.rope_theta}", logger=logger, level=logging.INFO, rank=0)
|
853 |
+
if config.rope_interleaved:
|
854 |
+
log_rank(
|
855 |
+
"The RoPE interleaved version differs from the Transformers implementation. It's better to set rope_interleaved=False if you need to convert the weights to Transformers",
|
856 |
+
logger=logger,
|
857 |
+
level=logging.INFO,
|
858 |
+
rank=0,
|
859 |
+
)
|
860 |
+
|
861 |
+
self.decoder = nn.ModuleList(
|
862 |
+
[
|
863 |
+
PipelineBlock(
|
864 |
+
p2p=self.p2p,
|
865 |
+
module_builder=LlamaDecoderLayer,
|
866 |
+
module_kwargs={
|
867 |
+
"config": config,
|
868 |
+
"parallel_config": parallel_config,
|
869 |
+
"tp_pg": parallel_context.tp_pg,
|
870 |
+
"layer_idx": layer_idx,
|
871 |
+
},
|
872 |
+
module_input_keys={"hidden_states", "sequence_mask"},
|
873 |
+
module_output_keys={"hidden_states", "sequence_mask"},
|
874 |
+
)
|
875 |
+
for layer_idx in range(config.num_hidden_layers)
|
876 |
+
]
|
877 |
+
)
|
878 |
+
|
879 |
+
self.final_layer_norm = PipelineBlock(
|
880 |
+
p2p=self.p2p,
|
881 |
+
module_builder=TritonRMSNorm,
|
882 |
+
module_kwargs={"hidden_size": config.hidden_size, "eps": config.rms_norm_eps},
|
883 |
+
module_input_keys={"input"},
|
884 |
+
module_output_keys={"hidden_states"},
|
885 |
+
) # TODO
|
886 |
+
|
887 |
+
self.lm_head = PipelineBlock(
|
888 |
+
p2p=self.p2p,
|
889 |
+
# Understand that this means that we return sharded logits that are going to need to be gathered
|
890 |
+
module_builder=TensorParallelColumnLinear,
|
891 |
+
module_kwargs={
|
892 |
+
"in_features": config.hidden_size,
|
893 |
+
"out_features": config.vocab_size,
|
894 |
+
"pg": parallel_context.tp_pg,
|
895 |
+
"bias": False,
|
896 |
+
# TODO @thomasw21: refactor so that we store that default in a single place.
|
897 |
+
"mode": self.tp_mode,
|
898 |
+
"async_communication": tp_linear_async_communication,
|
899 |
+
"tp_recompute_allgather": parallel_config.tp_recompute_allgather,
|
900 |
+
},
|
901 |
+
module_input_keys={"x"},
|
902 |
+
module_output_keys={"logits"},
|
903 |
+
)
|
904 |
+
|
905 |
+
self.cast_to_fp32 = PipelineBlock(
|
906 |
+
p2p=self.p2p,
|
907 |
+
module_builder=lambda: lambda x: x.float(),
|
908 |
+
module_kwargs={},
|
909 |
+
module_input_keys={"x"},
|
910 |
+
module_output_keys={"output"},
|
911 |
+
)
|
912 |
+
|
913 |
+
def forward(
|
914 |
+
self,
|
915 |
+
input_ids: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
916 |
+
input_mask: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
917 |
+
):
|
918 |
+
return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
919 |
+
|
920 |
+
def forward_with_hidden_states(
|
921 |
+
self,
|
922 |
+
input_ids: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
923 |
+
input_mask: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
|
924 |
+
):
|
925 |
+
# all tensors are optional as most ranks don't need anything from the dataloader.
|
926 |
+
|
927 |
+
output = self.token_position_embeddings(input_ids=input_ids, input_mask=input_mask)
|
928 |
+
|
929 |
+
hidden_encoder_states = {
|
930 |
+
"hidden_states": output["input_embeds"],
|
931 |
+
"sequence_mask": input_mask,
|
932 |
+
}
|
933 |
+
for encoder_block in self.decoder:
|
934 |
+
hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
935 |
+
|
936 |
+
hidden_states = self.final_layer_norm(input=hidden_encoder_states["hidden_states"])["hidden_states"]
|
937 |
+
|
938 |
+
sharded_logits = self.lm_head(x=hidden_states)["logits"]
|
939 |
+
|
940 |
+
fp32_sharded_logits = self.cast_to_fp32(x=sharded_logits)["output"]
|
941 |
+
|
942 |
+
return fp32_sharded_logits, hidden_states
|
943 |
+
|
944 |
+
def get_block_compute_costs(self):
|
945 |
+
"""Computes the compute cost of each block in the model so that we can do a better job of load balancing."""
|
946 |
+
model_config = self.config
|
947 |
+
d_ff = model_config.intermediate_size
|
948 |
+
d_qkv = model_config.hidden_size // model_config.num_attention_heads
|
949 |
+
block_compute_costs = {
|
950 |
+
# CausalSelfAttention (qkv proj + attn out) + MLP
|
951 |
+
LlamaDecoderLayer: 4 * model_config.num_attention_heads * d_qkv * model_config.hidden_size
|
952 |
+
+ 3 * d_ff * model_config.hidden_size,
|
953 |
+
# This is the last lm_head
|
954 |
+
TensorParallelColumnLinear: model_config.vocab_size * model_config.hidden_size,
|
955 |
+
}
|
956 |
+
return block_compute_costs
|
957 |
+
|
958 |
+
def get_flops_per_sec(self, iteration_time_in_sec, sequence_length, global_batch_size):
|
959 |
+
"""Get flops per second for a given model"""
|
960 |
+
world_size = self.parallel_context.world_pg.size()
|
961 |
+
try:
|
962 |
+
num_key_values_heads = self.config.num_key_value_heads
|
963 |
+
except AttributeError:
|
964 |
+
num_key_values_heads = self.config.num_attention_heads
|
965 |
+
|
966 |
+
model_flops, hardware_flops = get_flops(
|
967 |
+
num_layers=self.config.num_hidden_layers,
|
968 |
+
hidden_size=self.config.hidden_size,
|
969 |
+
num_heads=self.config.num_attention_heads,
|
970 |
+
num_key_value_heads=num_key_values_heads,
|
971 |
+
vocab_size=self.config.vocab_size,
|
972 |
+
ffn_hidden_size=self.config.intermediate_size,
|
973 |
+
seq_len=sequence_length,
|
974 |
+
batch_size=global_batch_size,
|
975 |
+
)
|
976 |
+
|
977 |
+
model_flops_per_s = model_flops / (iteration_time_in_sec * world_size * 1e12)
|
978 |
+
hardware_flops_per_s = hardware_flops / (iteration_time_in_sec * world_size * 1e12)
|
979 |
+
return model_flops_per_s, hardware_flops_per_s
|
980 |
+
|
981 |
+
|
982 |
+
@torch.jit.script
|
983 |
+
def masked_mean(loss, label_mask, dtype):
|
984 |
+
# type: (Tensor, Tensor, torch.dtype) -> Tensor
|
985 |
+
return (loss * label_mask).sum(dtype=dtype) / label_mask.sum()
|
986 |
+
|
987 |
+
|
988 |
+
class Loss(nn.Module):
|
989 |
+
def __init__(self, tp_pg: dist.ProcessGroup):
|
990 |
+
super().__init__()
|
991 |
+
self.tp_pg = tp_pg
|
992 |
+
|
993 |
+
def forward(
|
994 |
+
self,
|
995 |
+
sharded_logits: torch.Tensor, # [seq_length, batch_size, logits]
|
996 |
+
label_ids: torch.Tensor, # [batch_size, seq_length]
|
997 |
+
label_mask: torch.Tensor, # [batch_size, seq_length]
|
998 |
+
) -> Dict[str, torch.Tensor]:
|
999 |
+
# Megatron by defaults cast everything in fp32. `--f16-lm-cross-entropy` is an option you can use to keep current precision.
|
1000 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/f267e6186eae1d6e2055b412b00e2e545a8e896a/megatron/model/gpt_model.py#L38
|
1001 |
+
|
1002 |
+
loss = sharded_cross_entropy(
|
1003 |
+
sharded_logits, label_ids.transpose(0, 1).contiguous(), group=self.tp_pg, dtype=torch.float
|
1004 |
+
).transpose(0, 1)
|
1005 |
+
# TODO @thomasw21: It's unclear what kind of normalization we want to do.
|
1006 |
+
loss = masked_mean(loss, label_mask, dtype=torch.float)
|
1007 |
+
# I think indexing causes a sync we don't actually want
|
1008 |
+
# loss = loss[label_mask].sum()
|
1009 |
+
return {"loss": loss}
|
1010 |
+
|
1011 |
+
|
1012 |
+
class LlamaForTrainingFromOurNanotron(NanotronModel):
|
1013 |
+
def __init__(
|
1014 |
+
self,
|
1015 |
+
config: LlamaConfig,
|
1016 |
+
parallel_context: ParallelContext,
|
1017 |
+
parallel_config: Optional[ParallelismArgs],
|
1018 |
+
random_states: Optional[RandomStates] = None,
|
1019 |
+
):
|
1020 |
+
super().__init__()
|
1021 |
+
self.model = LlamaModel(config=config, parallel_context=parallel_context, parallel_config=parallel_config)
|
1022 |
+
self.loss = PipelineBlock(
|
1023 |
+
p2p=self.model.p2p,
|
1024 |
+
module_builder=Loss,
|
1025 |
+
module_kwargs={"tp_pg": parallel_context.tp_pg},
|
1026 |
+
module_input_keys={
|
1027 |
+
"sharded_logits",
|
1028 |
+
"label_ids",
|
1029 |
+
"label_mask",
|
1030 |
+
},
|
1031 |
+
module_output_keys={"loss"},
|
1032 |
+
)
|
1033 |
+
self.parallel_context = parallel_context
|
1034 |
+
self.config = config
|
1035 |
+
self.parallel_config = parallel_config
|
1036 |
+
|
1037 |
+
def forward(
|
1038 |
+
self,
|
1039 |
+
input_ids: Union[torch.Tensor, TensorPointer],
|
1040 |
+
input_mask: Union[torch.Tensor, TensorPointer],
|
1041 |
+
label_ids: Union[torch.Tensor, TensorPointer],
|
1042 |
+
label_mask: Union[torch.Tensor, TensorPointer],
|
1043 |
+
) -> Dict[str, Union[torch.Tensor, TensorPointer]]:
|
1044 |
+
sharded_logits = self.model(
|
1045 |
+
input_ids=input_ids,
|
1046 |
+
input_mask=input_mask,
|
1047 |
+
)
|
1048 |
+
loss = self.loss(
|
1049 |
+
sharded_logits=sharded_logits,
|
1050 |
+
label_ids=label_ids,
|
1051 |
+
label_mask=label_mask,
|
1052 |
+
)["loss"]
|
1053 |
+
return {"loss": loss}
|
1054 |
+
|
1055 |
+
@torch.no_grad()
|
1056 |
+
def init_model_randomly(self, config: Config):
|
1057 |
+
"""Initialize model parameters randomly.
|
1058 |
+
Note:
|
1059 |
+
Layernorm weight all 0 or 1 depending on `apply_layernorm_1p`
|
1060 |
+
"""
|
1061 |
+
init_method = config.model.init_method
|
1062 |
+
if isinstance(init_method, RandomInit):
|
1063 |
+
parametrizator_cls = StandardParametrizator
|
1064 |
+
elif isinstance(init_method, SpectralMupInit):
|
1065 |
+
parametrizator_cls = SpectralMupParametrizator
|
1066 |
+
else:
|
1067 |
+
raise ValueError(f"Unknown init method {init_method}")
|
1068 |
+
|
1069 |
+
parametrizator = parametrizator_cls(config=config.model)
|
1070 |
+
|
1071 |
+
log_rank(
|
1072 |
+
f"Parametrizing model parameters using {parametrizator.__class__.__name__}",
|
1073 |
+
logger=logger,
|
1074 |
+
level=logging.INFO,
|
1075 |
+
rank=0,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
model = self
|
1079 |
+
initialized_parameters = set()
|
1080 |
+
# Handle tensor parallelism
|
1081 |
+
module_id_to_prefix = {id(module): f"{module_name}." for module_name, module in model.named_modules()}
|
1082 |
+
# Fix the root_model
|
1083 |
+
module_id_to_prefix[id(model)] = ""
|
1084 |
+
|
1085 |
+
for param_name, param in model.named_parameters():
|
1086 |
+
assert isinstance(param, NanotronParameter)
|
1087 |
+
|
1088 |
+
module_name, param_name = param_name.rsplit(".", 1)
|
1089 |
+
|
1090 |
+
if param.is_tied:
|
1091 |
+
tied_info = param.get_tied_info()
|
1092 |
+
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
|
1093 |
+
module_id_to_prefix=module_id_to_prefix
|
1094 |
+
)
|
1095 |
+
else:
|
1096 |
+
full_param_name = f"{module_name}.{param_name}"
|
1097 |
+
|
1098 |
+
if full_param_name in initialized_parameters:
|
1099 |
+
# Already initialized
|
1100 |
+
continue
|
1101 |
+
|
1102 |
+
module = model.get_submodule(module_name)
|
1103 |
+
parametrizator.parametrize(param_name, module)
|
1104 |
+
|
1105 |
+
assert full_param_name not in initialized_parameters
|
1106 |
+
initialized_parameters.add(full_param_name)
|
1107 |
+
|
1108 |
+
assert initialized_parameters == {
|
1109 |
+
param.get_tied_info().get_full_name_from_module_id_to_prefix(module_id_to_prefix=module_id_to_prefix)
|
1110 |
+
if param.is_tied
|
1111 |
+
else name
|
1112 |
+
for name, param in model.named_parameters()
|
1113 |
+
}, f"Somehow the initialized set of parameters don't match:\n - Expected: { {name for name, _ in model.named_parameters()} }\n - Got: {initialized_parameters}"
|
1114 |
+
|
1115 |
+
def get_embeddings_lm_head_tied_names(self):
|
1116 |
+
"""Get the names of the tied embeddings and lm_head weights"""
|
1117 |
+
if self.config.tie_word_embeddings is True:
|
1118 |
+
return ["model.token_position_embeddings.pp_block.token_embedding.weight", "model.lm_head.pp_block.weight"]
|
1119 |
+
else:
|
1120 |
+
return []
|
1121 |
+
|
1122 |
+
def get_block_compute_costs(self):
|
1123 |
+
"""Computes the compute cost of each block in the model so that we can do a better job of load balancing."""
|
1124 |
+
return self.model.get_block_compute_costs()
|
1125 |
+
|
1126 |
+
def get_flops_per_sec(self, iteration_time_in_sec, sequence_length, global_batch_size):
|
1127 |
+
"""Get flops per second for a given model"""
|
1128 |
+
return self.model.get_flops_per_sec(iteration_time_in_sec, sequence_length, global_batch_size)
|
1129 |
+
|
1130 |
+
|
1131 |
+
def get_flops(
|
1132 |
+
num_layers,
|
1133 |
+
hidden_size,
|
1134 |
+
num_heads,
|
1135 |
+
num_key_value_heads,
|
1136 |
+
vocab_size,
|
1137 |
+
seq_len,
|
1138 |
+
ffn_hidden_size,
|
1139 |
+
batch_size=1,
|
1140 |
+
):
|
1141 |
+
"""Counts flops in an decoder-only model
|
1142 |
+
Args:
|
1143 |
+
num_layers: number of decoder layers
|
1144 |
+
hidden_size: hidden size of the model
|
1145 |
+
num_heads: number of heads in the model
|
1146 |
+
num_key_value_heads: number of key/value heads in the model
|
1147 |
+
ffn_hidden_size: hidden size of the FFN
|
1148 |
+
vocab_size: size of the vocabulary
|
1149 |
+
seq_len: sequence length of the decoder
|
1150 |
+
batch_size: batch size
|
1151 |
+
Returns:
|
1152 |
+
model_flops: flops in the model (should be independent of the hardware and model implementation)
|
1153 |
+
hardware_flops: flops in the hardware (actual flops performed on the hardware). Check 6.3 in https://arxiv.org/pdf/2205.05198.pdf
|
1154 |
+
"""
|
1155 |
+
if num_key_value_heads is None:
|
1156 |
+
num_key_value_heads = num_heads
|
1157 |
+
hidden_size_per_head = hidden_size // num_heads
|
1158 |
+
# In the following we mark the reduced dimension with parentheses
|
1159 |
+
# decoder
|
1160 |
+
# self attention
|
1161 |
+
## qkv projection
|
1162 |
+
decoder_qkv_proj_flops_fwd = (
|
1163 |
+
2 * num_layers * batch_size * seq_len * (hidden_size) * num_heads * hidden_size_per_head
|
1164 |
+
+ 2 * num_layers * batch_size * seq_len * (hidden_size) * 2 * num_key_value_heads * hidden_size_per_head
|
1165 |
+
)
|
1166 |
+
## qk logits
|
1167 |
+
decoder_qk_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (hidden_size_per_head) * seq_len
|
1168 |
+
## v logits
|
1169 |
+
decoder_v_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (seq_len) * hidden_size_per_head
|
1170 |
+
## attn out
|
1171 |
+
decoder_attn_out_flops_fwd = (
|
1172 |
+
2 * num_layers * batch_size * num_heads * seq_len * (hidden_size_per_head) * hidden_size
|
1173 |
+
)
|
1174 |
+
# FF
|
1175 |
+
## 1st layer
|
1176 |
+
decoder_ffn_1_flops_fwd = 4 * num_layers * batch_size * seq_len * (hidden_size) * ffn_hidden_size
|
1177 |
+
## 2nd layer
|
1178 |
+
decoder_ffn_2_flops_fwd = 2 * num_layers * batch_size * seq_len * (ffn_hidden_size) * hidden_size
|
1179 |
+
|
1180 |
+
decoder_flops_fwd = (
|
1181 |
+
decoder_qkv_proj_flops_fwd
|
1182 |
+
+ decoder_qk_logits_flops_fwd
|
1183 |
+
+ decoder_v_logits_flops_fwd
|
1184 |
+
+ decoder_attn_out_flops_fwd
|
1185 |
+
+ decoder_ffn_1_flops_fwd
|
1186 |
+
+ decoder_ffn_2_flops_fwd
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
# lm head
|
1190 |
+
lm_head_flops_fwd = 2 * batch_size * seq_len * (hidden_size) * vocab_size
|
1191 |
+
|
1192 |
+
# the bwd pass requires double the flops in case of matmuls to calculate the gradients with respect to
|
1193 |
+
# both input and weight tensors
|
1194 |
+
model_flops = 3 * (decoder_flops_fwd + lm_head_flops_fwd) # 1 for fwd + 2 for bwd
|
1195 |
+
|
1196 |
+
hardware_flops = model_flops # TODO: This is a placeholder for now
|
1197 |
+
|
1198 |
+
return model_flops, hardware_flops
|