--- language: "english" license: "mit" datasets: - race metrics: - accuracy --- # Roberta Large Fine Tuned on RACE ## Model description This model is a fine-tuned model of Roberta-large applied on RACE #### How to use ```python import datasets from transformers import RobertaTokenizer from transformers import RobertaForMultipleChoice tokenizer = RobertaTokenizer.from_pretrained( "LIAMF-USP/roberta-large-finetuned-race") model = RobertaForMultipleChoice.from_pretrained( "LIAMF-USP/roberta-large-finetuned-race") dataset = datasets.load_dataset( "race", "all", split=["train", "validation", "test"], )training_examples = dataset[0] evaluation_examples = dataset[1] test_examples = dataset[2] example=training_examples[0] example_id = example["example_id"] question = example["question"] context = example["article"] options = example["options"] label_example = example["answer"] label_map = {label: i for i, label in enumerate(["A", "B", "C", "D"])} choices_inputs = [] for ending_idx, (_, ending) in enumerate( zip(context, options)): if question.find("_") != -1: # fill in the banks questions question_option = question.replace("_", ending) else: question_option = question + " " + ending inputs = tokenizer( context, question_option, add_special_tokens=True, max_length=MAX_SEQ_LENGTH, padding="max_length", truncation=True, return_overflowing_tokens=False, ) label = label_map[label_example] input_ids = [x["input_ids"] for x in choices_inputs] attention_mask = ( [x["attention_mask"] for x in choices_inputs] # as the senteces follow the same structure, #just one of them is necessary to check if "attention_mask" in choices_inputs[0] else None ) example_encoded = { "example_id": example_id, "input_ids": input_ids, "attention_mask": attention_mask, "label": label, } output = model(**example_encoded) ``` ## Training data The initial model was [roberta large model](https://huggingface.co./roberta-large) which was then fine-tuned on [RACE dataset](https://www.cs.cmu.edu/~glai1/data/race/) ## Training procedure It was necessary to preprocess the data with a method that is exemplified for a single instance in the _How to use_ section. The used hyperparameters were the following: | Hyperparameter | Value | |:----:|:----:| | adam_beta1 | 0.9 | | adam_beta2 | 0.98 | | adam_epsilon | 1.000e-8 | | eval_batch_size | 32 | | train_batch_size | 1 | | fp16 | True | | gradient_accumulation_steps | 16 | | learning_rate | 0.00001 | | warmup_steps | 1000 | | max_length | 512 | | epochs | 4 | ## Eval results: | Dataset Acc | Eval | All Test |High School Test |Middle School Test | |:----:|:----:|:----:|:----:|:----:| | | 85.2 | 84.9|83.5|88.0| **The model was trained with a Tesla V100-PCIE-16GB**