--- library_name: transformers license: mit base_model: xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-xlnet-large-cased-finetuned-semeval-aug results: [] --- # CS221-xlnet-large-cased-finetuned-semeval-aug This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co./xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3323 - F1: 0.7655 - Roc Auc: 0.8218 - Accuracy: 0.5483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.5847 | 1.0 | 277 | 0.5747 | 0.1535 | 0.5011 | 0.1409 | | 0.5058 | 2.0 | 554 | 0.4907 | 0.3674 | 0.5986 | 0.2367 | | 0.3991 | 3.0 | 831 | 0.4118 | 0.5551 | 0.6989 | 0.3921 | | 0.3316 | 4.0 | 1108 | 0.3466 | 0.7102 | 0.7920 | 0.4770 | | 0.2593 | 5.0 | 1385 | 0.3323 | 0.7655 | 0.8218 | 0.5483 | | 0.1562 | 6.0 | 1662 | 0.3410 | 0.7838 | 0.8322 | 0.5962 | | 0.1033 | 7.0 | 1939 | 0.3470 | 0.8023 | 0.8499 | 0.6134 | | 0.0641 | 8.0 | 2216 | 0.3608 | 0.8102 | 0.8583 | 0.6314 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0