--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-bert-base-uncased-finetuned-semeval-NT-sun results: [] --- # CS221-bert-base-uncased-finetuned-semeval-NT-sun This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4060 - F1: 0.6852 - Roc Auc: 0.7739 - Accuracy: 0.5135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4264 | 1.0 | 93 | 0.4356 | 0.6154 | 0.7316 | 0.4811 | | 0.3577 | 2.0 | 186 | 0.3867 | 0.6667 | 0.7663 | 0.4811 | | 0.321 | 3.0 | 279 | 0.3666 | 0.6773 | 0.7702 | 0.4973 | | 0.2953 | 4.0 | 372 | 0.3691 | 0.6698 | 0.7625 | 0.4973 | | 0.236 | 5.0 | 465 | 0.3840 | 0.6667 | 0.7645 | 0.4757 | | 0.2011 | 6.0 | 558 | 0.4060 | 0.6852 | 0.7739 | 0.5135 | | 0.1135 | 7.0 | 651 | 0.4200 | 0.6711 | 0.7690 | 0.4865 | | 0.1056 | 8.0 | 744 | 0.4691 | 0.6636 | 0.7607 | 0.4973 | | 0.0854 | 9.0 | 837 | 0.4758 | 0.6727 | 0.7680 | 0.5027 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Tokenizers 0.21.0