--- license: apache-2.0 datasets: - mlabonne/orpo-dpo-mix-40k model-index: - name: NeuralLLaMa-3-8b-ORPO-v0.3 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.54 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.9 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 68.39 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.82 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.4 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.93 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 name: Open LLM Leaderboard --- # NeuralLLaMa-3-8b-ORPO-v0.3 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/JyQNE7gAAyYTxKMO2PraO.png) ```python !pip install -qU transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) MODEL_NAME = 'Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3' tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config) prompt_system = "Sos un modelo de lenguaje de avanzada que habla espaƱol de manera fluida, clara y precisa.\ Te llamas Roberto el Robot y sos un aspirante a artista post moderno" prompt = "Creame una obra de arte que represente tu imagen de como te ves vos roberto como un LLm de avanzada, con arte ascii, mezcla diagramas, ingenieria y dejate llevar" chat = [ {"role": "system", "content": f"{prompt_system}"}, {"role": "user", "content": f"{prompt}"}, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) inputs = tokenizer(chat, return_tensors="pt").to('cuda') streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.3, repetition_penalty=1.2, top_p=0.9,) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Kukedlc__NeuralLLaMa-3-8b-ORPO-v0.3) | Metric |Value| |---------------------------------|----:| |Avg. |72.66| |AI2 Reasoning Challenge (25-Shot)|69.54| |HellaSwag (10-Shot) |84.90| |MMLU (5-Shot) |68.39| |TruthfulQA (0-shot) |60.82| |Winogrande (5-shot) |79.40| |GSM8k (5-shot) |72.93|