--- tags: - merge - mergekit - lazymergekit - paulml/OmniBeagleSquaredMBX-v3-7B - nlpguy/AlloyIngotNeoX - Gille/StrangeMerges_21-7B-slerp - Kukedlc/Jupiter-k-7B-slerp - Kukedlc/NeuralSirKrishna-7b base_model: - paulml/OmniBeagleSquaredMBX-v3-7B - nlpguy/AlloyIngotNeoX - Gille/StrangeMerges_21-7B-slerp - Kukedlc/Jupiter-k-7B-slerp - Kukedlc/NeuralSirKrishna-7b license: apache-2.0 --- # Neural-4-ARC-7b Neural-4-ARC-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [paulml/OmniBeagleSquaredMBX-v3-7B](https://huggingface.co./paulml/OmniBeagleSquaredMBX-v3-7B) * [nlpguy/AlloyIngotNeoX](https://huggingface.co./nlpguy/AlloyIngotNeoX) * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co./Gille/StrangeMerges_21-7B-slerp) * [Kukedlc/Jupiter-k-7B-slerp](https://huggingface.co./Kukedlc/Jupiter-k-7B-slerp) * [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co./Kukedlc/NeuralSirKrishna-7b) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralSirKrishna-7b # No parameters necessary for base model - model: paulml/OmniBeagleSquaredMBX-v3-7B parameters: density: 0.66 weight: 0.2 - model: nlpguy/AlloyIngotNeoX parameters: density: 0.55 weight: 0.2 - model: Gille/StrangeMerges_21-7B-slerp parameters: density: 0.55 weight: 0.2 - model: Kukedlc/Jupiter-k-7B-slerp parameters: density: 0.44 weight: 0.2 - model: Kukedlc/NeuralSirKrishna-7b parameters: density: 0.66 weight: 0.2 merge_method: dare_ties base_model: Kukedlc/NeuralSirKrishna-7b parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Neural-4-ARC-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```