--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - indian_names metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: indian_names type: indian_names config: indian_names split: train args: indian_names metrics: - name: Precision type: precision value: 0.9939821779886587 - name: Recall type: recall value: 0.9958260869565217 - name: F1 type: f1 value: 0.9949032781188464 - name: Accuracy type: accuracy value: 0.999003984063745 --- # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the indian_names dataset. It achieves the following results on the evaluation set: - Loss: 0.0050 - Precision: 0.9940 - Recall: 0.9958 - F1: 0.9949 - Accuracy: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 66 | 0.0440 | 0.9579 | 0.9650 | 0.9614 | 0.9906 | | No log | 2.0 | 132 | 0.0191 | 0.9870 | 0.9821 | 0.9845 | 0.9959 | | No log | 3.0 | 198 | 0.0098 | 0.9919 | 0.9899 | 0.9909 | 0.9980 | | No log | 4.0 | 264 | 0.0061 | 0.9927 | 0.9935 | 0.9931 | 0.9987 | | No log | 5.0 | 330 | 0.0050 | 0.9940 | 0.9958 | 0.9949 | 0.9990 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3