--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: test args: indian_names metrics: - name: Precision type: precision value: 0.963972882815022 - name: Recall type: recall value: 0.9317482110168082 - name: F1 type: f1 value: 0.9475866591916392 - name: Accuracy type: accuracy value: 0.9675355765394335 --- # Bert-NER This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co./distilbert-base-cased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0729 - Precision: 0.9640 - Recall: 0.9317 - F1: 0.9476 - Accuracy: 0.9675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.0865 | 0.9568 | 0.9243 | 0.9403 | 0.9632 | | 0.0768 | 2.0 | 876 | 0.0794 | 0.9635 | 0.9277 | 0.9452 | 0.9662 | | 0.0515 | 3.0 | 1314 | 0.0729 | 0.9640 | 0.9317 | 0.9476 | 0.9675 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0