--- license: apache-2.0 tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: test args: indian_names metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- # my_awesome_wnut_model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 344 | 0.0003 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 0.031 | 2.0 | 688 | 0.0002 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 0.005 | 3.0 | 1032 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.005 | 4.0 | 1376 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.001 | 5.0 | 1720 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3