--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: test args: indian_names metrics: - name: Precision type: precision value: 0.9752319346327347 - name: Recall type: recall value: 0.9923783128356141 - name: F1 type: f1 value: 0.9837304142519855 - name: Accuracy type: accuracy value: 0.9730393535444438 --- # Bert-NER This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1205 - Precision: 0.9752 - Recall: 0.9924 - F1: 0.9837 - Accuracy: 0.9730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0825 | 1.0 | 501 | 0.1031 | 0.9600 | 0.9917 | 0.9756 | 0.9770 | | 0.0337 | 2.0 | 1002 | 0.1491 | 0.9615 | 0.9942 | 0.9776 | 0.9648 | | 0.0285 | 3.0 | 1503 | 0.1169 | 0.9754 | 0.9913 | 0.9833 | 0.9723 | | 0.0249 | 4.0 | 2004 | 0.1054 | 0.9724 | 0.9921 | 0.9821 | 0.9783 | | 0.0232 | 5.0 | 2505 | 0.1205 | 0.9752 | 0.9924 | 0.9837 | 0.9730 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1