--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: test args: indian_names metrics: - name: Precision type: precision value: 0.9825882454474842 - name: Recall type: recall value: 0.9473498086204027 - name: F1 type: f1 value: 0.9646473204829485 - name: Accuracy type: accuracy value: 0.9779358957308153 --- # Bert-NER This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0525 - Precision: 0.9826 - Recall: 0.9473 - F1: 0.9646 - Accuracy: 0.9779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0568 | 1.0 | 875 | 0.0813 | 0.9641 | 0.9244 | 0.9438 | 0.9655 | | 0.0524 | 2.0 | 1750 | 0.0784 | 0.9619 | 0.9283 | 0.9448 | 0.9660 | | 0.0481 | 3.0 | 2625 | 0.0719 | 0.9684 | 0.9301 | 0.9489 | 0.9685 | | 0.0449 | 4.0 | 3500 | 0.0621 | 0.9736 | 0.9428 | 0.9579 | 0.9738 | | 0.0384 | 5.0 | 4375 | 0.0525 | 0.9826 | 0.9473 | 0.9646 | 0.9779 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3