--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: train args: indian_names metrics: - name: Precision type: precision value: 0.9986185030007927 - name: Recall type: recall value: 0.9989804934411745 - name: F1 type: f1 value: 0.998799465422339 - name: Accuracy type: accuracy value: 0.9994169549500524 --- # Bert-NER This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0020 - Precision: 0.9986 - Recall: 0.9990 - F1: 0.9988 - Accuracy: 0.9994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0068 | 1.03 | 500 | 0.0054 | 0.9976 | 0.9944 | 0.9960 | 0.9980 | | 0.0076 | 2.06 | 1000 | 0.0020 | 0.9986 | 0.9990 | 0.9988 | 0.9994 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1