--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: train args: indian_names metrics: - name: Precision type: precision value: 0.9994683935820607 - name: Recall type: recall value: 0.999371798588963 - name: F1 type: f1 value: 0.9994200937515101 - name: Accuracy type: accuracy value: 0.9998144414067816 --- # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0018 - Precision: 0.9995 - Recall: 0.9994 - F1: 0.9994 - Accuracy: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1459 | 1.0 | 533 | 0.0584 | 0.9602 | 0.9620 | 0.9611 | 0.9876 | | 0.0546 | 2.0 | 1066 | 0.0237 | 0.9866 | 0.9866 | 0.9866 | 0.9957 | | 0.025 | 3.0 | 1599 | 0.0080 | 0.9967 | 0.9945 | 0.9956 | 0.9985 | | 0.0116 | 4.0 | 2132 | 0.0040 | 0.9980 | 0.9979 | 0.9980 | 0.9994 | | 0.0058 | 5.0 | 2665 | 0.0018 | 0.9995 | 0.9994 | 0.9994 | 0.9998 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3