--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: test args: indian_names metrics: - name: Precision type: precision value: 0.7254647322919372 - name: Recall type: recall value: 0.8467001558981465 - name: F1 type: f1 value: 0.7814079891293488 - name: Accuracy type: accuracy value: 0.8557099199430039 --- # Bert-NER This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.9081 - Precision: 0.7255 - Recall: 0.8467 - F1: 0.7814 - Accuracy: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0934 | 1.0 | 501 | 0.6938 | 0.7190 | 0.8536 | 0.7805 | 0.8502 | | 0.035 | 2.0 | 1002 | 0.7709 | 0.7087 | 0.8383 | 0.7681 | 0.8446 | | 0.0196 | 3.0 | 1503 | 0.7814 | 0.7130 | 0.8439 | 0.7729 | 0.8477 | | 0.0109 | 4.0 | 2004 | 0.8572 | 0.7206 | 0.8467 | 0.7786 | 0.8526 | | 0.0065 | 5.0 | 2505 | 0.9081 | 0.7255 | 0.8467 | 0.7814 | 0.8557 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3