--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: test args: indian_names metrics: - name: Precision type: precision value: 0.9779481031086752 - name: Recall type: recall value: 0.950199700449326 - name: F1 type: f1 value: 0.96387423507069 - name: Accuracy type: accuracy value: 0.977337411889879 --- # Bert-NER This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co./distilbert-base-cased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0518 - Precision: 0.9779 - Recall: 0.9502 - F1: 0.9639 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.0725 | 0.9691 | 0.9325 | 0.9505 | 0.9693 | | 0.0435 | 2.0 | 876 | 0.0635 | 0.9687 | 0.9392 | 0.9537 | 0.9711 | | 0.039 | 3.0 | 1314 | 0.0569 | 0.9790 | 0.9416 | 0.9599 | 0.9751 | | 0.0392 | 4.0 | 1752 | 0.0542 | 0.9744 | 0.9490 | 0.9615 | 0.9758 | | 0.0378 | 5.0 | 2190 | 0.0518 | 0.9779 | 0.9502 | 0.9639 | 0.9773 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0