--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: train args: indian_names metrics: - name: Precision type: precision value: 0.9948381144840311 - name: Recall type: recall value: 0.972891113354671 - name: F1 type: f1 value: 0.9837422213534031 - name: Accuracy type: accuracy value: 0.9932984044056051 --- # Bert-NER This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0270 - Precision: 0.9948 - Recall: 0.9729 - F1: 0.9837 - Accuracy: 0.9933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0875 | 1.0 | 501 | 0.0328 | 0.9923 | 0.9696 | 0.9808 | 0.9920 | | 0.0333 | 2.0 | 1002 | 0.0289 | 0.9935 | 0.9726 | 0.9830 | 0.9929 | | 0.0283 | 3.0 | 1503 | 0.0270 | 0.9948 | 0.9729 | 0.9837 | 0.9933 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1