--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - indian_names metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: indian_names type: indian_names config: indian_names split: train args: indian_names metrics: - name: Precision type: precision value: 0.9941348973607038 - name: Recall type: recall value: 0.9921951219512195 - name: F1 type: f1 value: 0.9931640625 - name: Accuracy type: accuracy value: 0.9998052125131481 --- # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the indian_names dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 - Precision: 0.9941 - Recall: 0.9922 - F1: 0.9932 - Accuracy: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 63 | 0.1413 | 0.0 | 0.0 | 0.0 | 0.9745 | | No log | 2.0 | 126 | 0.1211 | 0.0 | 0.0 | 0.0 | 0.9745 | | No log | 3.0 | 189 | 0.0656 | 0.6231 | 0.2790 | 0.3854 | 0.9811 | | No log | 4.0 | 252 | 0.0380 | 0.7297 | 0.6059 | 0.6620 | 0.9894 | | No log | 5.0 | 315 | 0.0259 | 0.8341 | 0.7259 | 0.7762 | 0.9931 | | No log | 6.0 | 378 | 0.0136 | 0.8842 | 0.8712 | 0.8776 | 0.9963 | | No log | 7.0 | 441 | 0.0076 | 0.9286 | 0.9268 | 0.9277 | 0.9981 | | 0.0748 | 8.0 | 504 | 0.0054 | 0.9409 | 0.9473 | 0.9441 | 0.9985 | | 0.0748 | 9.0 | 567 | 0.0042 | 0.9520 | 0.9678 | 0.9598 | 0.9991 | | 0.0748 | 10.0 | 630 | 0.0025 | 0.9738 | 0.9795 | 0.9767 | 0.9995 | | 0.0748 | 11.0 | 693 | 0.0019 | 0.9863 | 0.9863 | 0.9863 | 0.9997 | | 0.0748 | 12.0 | 756 | 0.0015 | 0.9961 | 0.9912 | 0.9936 | 0.9998 | | 0.0748 | 13.0 | 819 | 0.0014 | 0.9912 | 0.9912 | 0.9912 | 0.9998 | | 0.0748 | 14.0 | 882 | 0.0013 | 0.9912 | 0.9912 | 0.9912 | 0.9998 | | 0.0748 | 15.0 | 945 | 0.0012 | 0.9941 | 0.9922 | 0.9932 | 0.9998 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3