Kriyans commited on
Commit
93a610e
1 Parent(s): 36d38c1

End of training

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9999768614928964
29
  - name: Recall
30
  type: recall
31
- value: 0.9999305876908838
32
  - name: F1
33
  type: f1
34
- value: 0.9999537240565493
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9999695484028137
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # my_awesome_wnut_model
44
 
45
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
  - Loss: 0.0001
48
- - Precision: 1.0000
49
- - Recall: 0.9999
50
- - F1: 1.0000
51
- - Accuracy: 1.0000
52
 
53
  ## Model description
54
 
@@ -79,11 +79,11 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0405 | 1.0 | 688 | 0.0024 | 0.9962 | 0.9969 | 0.9965 | 0.9980 |
83
- | 0.0078 | 2.0 | 1376 | 0.0017 | 0.9972 | 0.9989 | 0.9981 | 0.9990 |
84
- | 0.0024 | 3.0 | 2064 | 0.0004 | 0.9995 | 0.9998 | 0.9997 | 0.9998 |
85
- | 0.0008 | 4.0 | 2752 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
86
- | 0.001 | 5.0 | 3440 | 0.0001 | 1.0000 | 0.9999 | 1.0000 | 1.0000 |
87
 
88
 
89
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: bert-base-multilingual-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9998842940781709
29
  - name: Recall
30
  type: recall
31
+ value: 0.9998380192062941
32
  - name: F1
33
  type: f1
34
+ value: 0.9998611561068173
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.999938944347773
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # my_awesome_wnut_model
44
 
45
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
  - Loss: 0.0001
48
+ - Precision: 0.9999
49
+ - Recall: 0.9998
50
+ - F1: 0.9999
51
+ - Accuracy: 0.9999
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0342 | 1.0 | 688 | 0.0063 | 0.9950 | 0.9917 | 0.9934 | 0.9956 |
83
+ | 0.0117 | 2.0 | 1376 | 0.0015 | 0.9979 | 0.9974 | 0.9977 | 0.9988 |
84
+ | 0.0049 | 3.0 | 2064 | 0.0006 | 0.9991 | 0.9994 | 0.9992 | 0.9995 |
85
+ | 0.0017 | 4.0 | 2752 | 0.0001 | 0.9997 | 0.9997 | 0.9997 | 0.9999 |
86
+ | 0.001 | 5.0 | 3440 | 0.0001 | 0.9999 | 0.9998 | 0.9999 | 0.9999 |
87
 
88
 
89
  ### Framework versions