End of training
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indian_names dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,22 +73,17 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 | 66 | 0.
|
83 |
-
| No log | 2.0 | 132 | 0.
|
84 |
-
| No log | 3.0 | 198 | 0.
|
85 |
-
| No log | 4.0 | 264 | 0.
|
86 |
-
| No log | 5.0 | 330 | 0.
|
87 |
-
| No log | 6.0 | 396 | 0.0346 | 0.9359 | 0.9460 | 0.9409 | 0.9902 |
|
88 |
-
| No log | 7.0 | 462 | 0.0227 | 0.9708 | 0.9678 | 0.9693 | 0.9941 |
|
89 |
-
| 0.1068 | 8.0 | 528 | 0.0199 | 0.9753 | 0.9734 | 0.9743 | 0.9946 |
|
90 |
-
| 0.1068 | 9.0 | 594 | 0.0155 | 0.9801 | 0.9784 | 0.9793 | 0.9961 |
|
91 |
-
| 0.1068 | 10.0 | 660 | 0.0148 | 0.9800 | 0.9791 | 0.9796 | 0.9963 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9961035696329814
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9956030150753769
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9958532294546368
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9992964392964393
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the indian_names dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0042
|
48 |
+
- Precision: 0.9961
|
49 |
+
- Recall: 0.9956
|
50 |
+
- F1: 0.9959
|
51 |
+
- Accuracy: 0.9993
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 5
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 66 | 0.0152 | 0.9810 | 0.9820 | 0.9815 | 0.9963 |
|
83 |
+
| No log | 2.0 | 132 | 0.0108 | 0.9850 | 0.9849 | 0.9850 | 0.9971 |
|
84 |
+
| No log | 3.0 | 198 | 0.0067 | 0.9913 | 0.9920 | 0.9916 | 0.9986 |
|
85 |
+
| No log | 4.0 | 264 | 0.0056 | 0.9927 | 0.9928 | 0.9928 | 0.9988 |
|
86 |
+
| No log | 5.0 | 330 | 0.0042 | 0.9961 | 0.9956 | 0.9959 | 0.9993 |
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|