Kriyans commited on
Commit
7e321fe
1 Parent(s): a79ec85

End of training

Browse files
Files changed (1) hide show
  1. README.md +16 -13
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9610619087637641
29
  - name: Recall
30
  type: recall
31
- value: 0.927775004160426
32
  - name: F1
33
  type: f1
34
- value: 0.9441251495041227
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9654874318393404
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0821
48
- - Precision: 0.9611
49
- - Recall: 0.9278
50
- - F1: 0.9441
51
- - Accuracy: 0.9655
52
 
53
  ## Model description
54
 
@@ -67,20 +67,23 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 2e-05
71
  - train_batch_size: 16
72
  - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 2
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0979 | 1.0 | 875 | 0.0852 | 0.9602 | 0.9262 | 0.9429 | 0.9648 |
83
- | 0.0549 | 2.0 | 1750 | 0.0821 | 0.9611 | 0.9278 | 0.9441 | 0.9655 |
 
 
 
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9825882454474842
29
  - name: Recall
30
  type: recall
31
+ value: 0.9473498086204027
32
  - name: F1
33
  type: f1
34
+ value: 0.9646473204829485
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9779358957308153
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0525
48
+ - Precision: 0.9826
49
+ - Recall: 0.9473
50
+ - F1: 0.9646
51
+ - Accuracy: 0.9779
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
  - train_batch_size: 16
72
  - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 5
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0568 | 1.0 | 875 | 0.0813 | 0.9641 | 0.9244 | 0.9438 | 0.9655 |
83
+ | 0.0524 | 2.0 | 1750 | 0.0784 | 0.9619 | 0.9283 | 0.9448 | 0.9660 |
84
+ | 0.0481 | 3.0 | 2625 | 0.0719 | 0.9684 | 0.9301 | 0.9489 | 0.9685 |
85
+ | 0.0449 | 4.0 | 3500 | 0.0621 | 0.9736 | 0.9428 | 0.9579 | 0.9738 |
86
+ | 0.0384 | 5.0 | 4375 | 0.0525 | 0.9826 | 0.9473 | 0.9646 | 0.9779 |
87
 
88
 
89
  ### Framework versions