End of training
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# my_awesome_wnut_model
|
44 |
|
45 |
-
This model is a fine-tuned version of [
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,17 +73,15 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.0155 | 4.0 | 2752 | 0.0026 | 0.9948 | 0.9936 | 0.9942 | 0.9969 |
|
86 |
-
| 0.0103 | 5.0 | 3440 | 0.0019 | 0.9950 | 0.9949 | 0.9950 | 0.9976 |
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.999514136319467
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.999560388708931
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9995372619791305
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9997259356253235
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# my_awesome_wnut_model
|
44 |
|
45 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0004
|
48 |
+
- Precision: 0.9995
|
49 |
+
- Recall: 0.9996
|
50 |
+
- F1: 0.9995
|
51 |
+
- Accuracy: 0.9997
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 3
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0416 | 1.0 | 688 | 0.0029 | 0.9957 | 0.9972 | 0.9965 | 0.9980 |
|
83 |
+
| 0.008 | 2.0 | 1376 | 0.0010 | 0.9985 | 0.9990 | 0.9987 | 0.9993 |
|
84 |
+
| 0.0023 | 3.0 | 2064 | 0.0004 | 0.9995 | 0.9996 | 0.9995 | 0.9997 |
|
|
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|