--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - diffusers-training - lora inference: true --- # LoRA text2image fine-tuning - KorAI/sdxl-base-1.0-onepiece-lora These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the KorAI/onepiece-captioned dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline from diffusers import DiffusionPipeline import torch # Load Stable Diffusion XL Base1.0 pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to("cuda") # Optional CPU offloading to save some GPU Memory pipe.enable_model_cpu_offload() # Loading Trained LoRA Weights pipe.load_lora_weights("KorAI/sdxl-base-1.0-onepiece-lora") prompt = "Acilia Anime, anime character in a bikini with a sword and shield" # Invoke pipeline to generate image image = pipe( prompt = prompt, num_inference_steps=50, height=1024, width=1024, guidance_scale=7.0, ).images[0] # Display image image # Save Image image.save(f"sdxl_onepiece.png") ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]