File size: 1,605 Bytes
e1fd365
 
 
 
 
 
 
540ba7e
ffc00ec
49c5ab4
 
e1fd365
 
 
 
 
 
 
 
 
 
b493f7d
e1fd365
 
 
 
 
 
 
 
275916f
 
e1fd365
 
540ba7e
 
 
 
 
 
 
 
ca84192
 
c51cf1f
ca84192
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
language:
- "ja"
tags:
- "japanese"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: KoichiYasuoka/roberta-small-japanese-aozora
datasets:
- "universal_dependencies"
license: "cc-by-sa-4.0"
pipeline_tag: "token-classification"
widget:
- text: "国境の長いトンネルを抜けると雪国であった。"
---

# roberta-small-japanese-luw-upos

## Model Description

This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-small-japanese-aozora](https://huggingface.co./KoichiYasuoka/roberta-small-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).

## How to Use

```py
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-japanese-luw-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```

or

```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-small-japanese-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```

## See Also

[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models