KoichiYasuoka commited on
Commit
2396cec
·
1 Parent(s): 94c995e

initial release

Browse files
Files changed (9) hide show
  1. README.md +32 -0
  2. config.json +519 -0
  3. maker.py +109 -0
  4. mecab.py +34 -0
  5. pytorch_model.bin +3 -0
  6. special_tokens_map.json +37 -0
  7. tokenizer_config.json +71 -0
  8. ud.py +150 -0
  9. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "ja"
4
+ tags:
5
+ - "japanese"
6
+ - "pos"
7
+ - "dependency-parsing"
8
+ - "modernbert"
9
+ base_model: makiart/jp-ModernBert-large-preview
10
+ datasets:
11
+ - "universal_dependencies"
12
+ license: "mit"
13
+ pipeline_tag: "token-classification"
14
+ widget:
15
+ - text: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
16
+ ---
17
+
18
+ # modernbert-large-japanese-unidic-ud-embeds
19
+
20
+ ## Model Description
21
+
22
+ This is a ModernBERT model pretrained for POS-tagging and dependency-parsing, derived from [jp-ModernBert-large-preview](https://huggingface.co/makiart/jp-ModernBert-large-preview) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW).
23
+
24
+ ## How to Use
25
+
26
+ ```py
27
+ from transformers import pipeline
28
+ nlp=pipeline("universal-dependencies","KoichiYasuoka/modernbert-large-japanese-unidic-ud-embeds",trust_remote_code=True)
29
+ print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
30
+ ```
31
+
32
+ [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required.
config.json ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForTokenClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 2,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 2,
13
+ "custom_pipelines": {
14
+ "upos": {
15
+ "impl": "ud.BellmanFordTokenClassificationPipeline",
16
+ "pt": "AutoModelForTokenClassification"
17
+ },
18
+ "universal-dependencies": {
19
+ "impl": "ud.UniversalDependenciesPipeline",
20
+ "pt": "AutoModelForTokenClassification"
21
+ }
22
+ },
23
+ "decoder_bias": true,
24
+ "deterministic_flash_attn": false,
25
+ "embedding_dropout": 0.0,
26
+ "eos_token_id": 3,
27
+ "global_attn_every_n_layers": 3,
28
+ "global_rope_theta": 160000.0,
29
+ "gradient_checkpointing": false,
30
+ "hidden_activation": "gelu",
31
+ "hidden_size": 1024,
32
+ "id2label": {
33
+ "0": "ADJ",
34
+ "1": "ADJ.",
35
+ "2": "ADJ|_",
36
+ "3": "ADJ|l-acl",
37
+ "4": "ADJ|l-advcl",
38
+ "5": "ADJ|l-amod",
39
+ "6": "ADJ|l-ccomp",
40
+ "7": "ADJ|l-csubj",
41
+ "8": "ADJ|l-csubj:outer",
42
+ "9": "ADJ|l-nmod",
43
+ "10": "ADJ|l-nsubj",
44
+ "11": "ADJ|l-obj",
45
+ "12": "ADJ|l-obl",
46
+ "13": "ADJ|r-acl",
47
+ "14": "ADJ|r-amod",
48
+ "15": "ADJ|r-dep",
49
+ "16": "ADJ|root",
50
+ "17": "ADP",
51
+ "18": "ADP.",
52
+ "19": "ADP|_",
53
+ "20": "ADP|l-case",
54
+ "21": "ADP|r-case",
55
+ "22": "ADP|r-fixed",
56
+ "23": "ADV",
57
+ "24": "ADV.",
58
+ "25": "ADV|_",
59
+ "26": "ADV|l-advcl",
60
+ "27": "ADV|l-advmod",
61
+ "28": "ADV|l-obj",
62
+ "29": "ADV|r-dep",
63
+ "30": "ADV|root",
64
+ "31": "AUX",
65
+ "32": "AUX.",
66
+ "33": "AUX|Polarity=Neg|_",
67
+ "34": "AUX|Polarity=Neg|r-aux",
68
+ "35": "AUX|Polarity=Neg|r-fixed",
69
+ "36": "AUX|_",
70
+ "37": "AUX|r-aux",
71
+ "38": "AUX|r-cop",
72
+ "39": "AUX|r-fixed",
73
+ "40": "AUX|root",
74
+ "41": "B-ADJ",
75
+ "42": "B-ADJ.",
76
+ "43": "B-ADP",
77
+ "44": "B-ADP.",
78
+ "45": "B-ADV",
79
+ "46": "B-ADV.",
80
+ "47": "B-AUX",
81
+ "48": "B-AUX.",
82
+ "49": "B-CCONJ",
83
+ "50": "B-CCONJ.",
84
+ "51": "B-DET",
85
+ "52": "B-DET.",
86
+ "53": "B-INTJ",
87
+ "54": "B-INTJ.",
88
+ "55": "B-NOUN",
89
+ "56": "B-NOUN.",
90
+ "57": "B-NUM",
91
+ "58": "B-NUM.",
92
+ "59": "B-PART",
93
+ "60": "B-PART.",
94
+ "61": "B-PRON",
95
+ "62": "B-PRON.",
96
+ "63": "B-PROPN",
97
+ "64": "B-PROPN.",
98
+ "65": "B-PUNCT",
99
+ "66": "B-PUNCT.",
100
+ "67": "B-SCONJ",
101
+ "68": "B-SCONJ.",
102
+ "69": "B-SYM",
103
+ "70": "B-SYM.",
104
+ "71": "B-VERB",
105
+ "72": "B-VERB.",
106
+ "73": "B-X",
107
+ "74": "B-X.",
108
+ "75": "CCONJ",
109
+ "76": "CCONJ.",
110
+ "77": "CCONJ|_",
111
+ "78": "CCONJ|l-cc",
112
+ "79": "CCONJ|r-cc",
113
+ "80": "DET",
114
+ "81": "DET.",
115
+ "82": "DET|_",
116
+ "83": "DET|l-det",
117
+ "84": "I-ADJ",
118
+ "85": "I-ADJ.",
119
+ "86": "I-ADP",
120
+ "87": "I-ADP.",
121
+ "88": "I-ADV",
122
+ "89": "I-ADV.",
123
+ "90": "I-AUX",
124
+ "91": "I-AUX.",
125
+ "92": "I-CCONJ",
126
+ "93": "I-CCONJ.",
127
+ "94": "I-DET",
128
+ "95": "I-DET.",
129
+ "96": "I-INTJ",
130
+ "97": "I-INTJ.",
131
+ "98": "I-NOUN",
132
+ "99": "I-NOUN.",
133
+ "100": "I-NUM",
134
+ "101": "I-NUM.",
135
+ "102": "I-PART",
136
+ "103": "I-PART.",
137
+ "104": "I-PRON",
138
+ "105": "I-PRON.",
139
+ "106": "I-PROPN",
140
+ "107": "I-PROPN.",
141
+ "108": "I-PUNCT",
142
+ "109": "I-PUNCT.",
143
+ "110": "I-SCONJ",
144
+ "111": "I-SCONJ.",
145
+ "112": "I-SYM",
146
+ "113": "I-SYM.",
147
+ "114": "I-VERB",
148
+ "115": "I-VERB.",
149
+ "116": "I-X",
150
+ "117": "I-X.",
151
+ "118": "INTJ",
152
+ "119": "INTJ.",
153
+ "120": "INTJ|_",
154
+ "121": "INTJ|l-discourse",
155
+ "122": "INTJ|r-discourse",
156
+ "123": "INTJ|root",
157
+ "124": "NOUN",
158
+ "125": "NOUN.",
159
+ "126": "NOUN|Polarity=Neg|_",
160
+ "127": "NOUN|Polarity=Neg|l-obl",
161
+ "128": "NOUN|Polarity=Neg|root",
162
+ "129": "NOUN|_",
163
+ "130": "NOUN|l-acl",
164
+ "131": "NOUN|l-advcl",
165
+ "132": "NOUN|l-ccomp",
166
+ "133": "NOUN|l-compound",
167
+ "134": "NOUN|l-csubj",
168
+ "135": "NOUN|l-csubj:outer",
169
+ "136": "NOUN|l-nmod",
170
+ "137": "NOUN|l-nsubj",
171
+ "138": "NOUN|l-nsubj:outer",
172
+ "139": "NOUN|l-obj",
173
+ "140": "NOUN|l-obl",
174
+ "141": "NOUN|r-compound",
175
+ "142": "NOUN|r-nmod",
176
+ "143": "NOUN|r-nsubj",
177
+ "144": "NOUN|root",
178
+ "145": "NUM",
179
+ "146": "NUM.",
180
+ "147": "NUM|_",
181
+ "148": "NUM|l-advcl",
182
+ "149": "NUM|l-compound",
183
+ "150": "NUM|l-nmod",
184
+ "151": "NUM|l-nsubj",
185
+ "152": "NUM|l-nsubj:outer",
186
+ "153": "NUM|l-nummod",
187
+ "154": "NUM|l-obj",
188
+ "155": "NUM|l-obl",
189
+ "156": "NUM|r-compound",
190
+ "157": "NUM|root",
191
+ "158": "PART",
192
+ "159": "PART.",
193
+ "160": "PART|_",
194
+ "161": "PART|l-mark",
195
+ "162": "PART|r-mark",
196
+ "163": "PRON",
197
+ "164": "PRON.",
198
+ "165": "PRON|_",
199
+ "166": "PRON|l-acl",
200
+ "167": "PRON|l-advcl",
201
+ "168": "PRON|l-nmod",
202
+ "169": "PRON|l-nsubj",
203
+ "170": "PRON|l-nsubj:outer",
204
+ "171": "PRON|l-obj",
205
+ "172": "PRON|l-obl",
206
+ "173": "PRON|root",
207
+ "174": "PROPN",
208
+ "175": "PROPN.",
209
+ "176": "PROPN|_",
210
+ "177": "PROPN|l-acl",
211
+ "178": "PROPN|l-advcl",
212
+ "179": "PROPN|l-compound",
213
+ "180": "PROPN|l-nmod",
214
+ "181": "PROPN|l-nsubj",
215
+ "182": "PROPN|l-nsubj:outer",
216
+ "183": "PROPN|l-obj",
217
+ "184": "PROPN|l-obl",
218
+ "185": "PROPN|r-compound",
219
+ "186": "PROPN|r-nmod",
220
+ "187": "PROPN|root",
221
+ "188": "PUNCT",
222
+ "189": "PUNCT.",
223
+ "190": "PUNCT|_",
224
+ "191": "PUNCT|l-punct",
225
+ "192": "PUNCT|r-punct",
226
+ "193": "SCONJ",
227
+ "194": "SCONJ.",
228
+ "195": "SCONJ|_",
229
+ "196": "SCONJ|l-dep",
230
+ "197": "SCONJ|r-fixed",
231
+ "198": "SCONJ|r-mark",
232
+ "199": "SYM",
233
+ "200": "SYM.",
234
+ "201": "SYM|_",
235
+ "202": "SYM|l-compound",
236
+ "203": "SYM|l-dep",
237
+ "204": "SYM|l-nmod",
238
+ "205": "SYM|l-obl",
239
+ "206": "SYM|r-compound",
240
+ "207": "SYM|r-dep",
241
+ "208": "VERB",
242
+ "209": "VERB.",
243
+ "210": "VERB|_",
244
+ "211": "VERB|l-acl",
245
+ "212": "VERB|l-advcl",
246
+ "213": "VERB|l-ccomp",
247
+ "214": "VERB|l-compound",
248
+ "215": "VERB|l-csubj",
249
+ "216": "VERB|l-csubj:outer",
250
+ "217": "VERB|l-nmod",
251
+ "218": "VERB|l-obj",
252
+ "219": "VERB|l-obl",
253
+ "220": "VERB|r-acl",
254
+ "221": "VERB|r-advcl",
255
+ "222": "VERB|r-compound",
256
+ "223": "VERB|root",
257
+ "224": "X",
258
+ "225": "X.",
259
+ "226": "X|_",
260
+ "227": "X|l-nmod",
261
+ "228": "X|r-dep"
262
+ },
263
+ "initializer_cutoff_factor": 2.0,
264
+ "initializer_range": 0.02,
265
+ "intermediate_size": 2624,
266
+ "label2id": {
267
+ "ADJ": 0,
268
+ "ADJ.": 1,
269
+ "ADJ|_": 2,
270
+ "ADJ|l-acl": 3,
271
+ "ADJ|l-advcl": 4,
272
+ "ADJ|l-amod": 5,
273
+ "ADJ|l-ccomp": 6,
274
+ "ADJ|l-csubj": 7,
275
+ "ADJ|l-csubj:outer": 8,
276
+ "ADJ|l-nmod": 9,
277
+ "ADJ|l-nsubj": 10,
278
+ "ADJ|l-obj": 11,
279
+ "ADJ|l-obl": 12,
280
+ "ADJ|r-acl": 13,
281
+ "ADJ|r-amod": 14,
282
+ "ADJ|r-dep": 15,
283
+ "ADJ|root": 16,
284
+ "ADP": 17,
285
+ "ADP.": 18,
286
+ "ADP|_": 19,
287
+ "ADP|l-case": 20,
288
+ "ADP|r-case": 21,
289
+ "ADP|r-fixed": 22,
290
+ "ADV": 23,
291
+ "ADV.": 24,
292
+ "ADV|_": 25,
293
+ "ADV|l-advcl": 26,
294
+ "ADV|l-advmod": 27,
295
+ "ADV|l-obj": 28,
296
+ "ADV|r-dep": 29,
297
+ "ADV|root": 30,
298
+ "AUX": 31,
299
+ "AUX.": 32,
300
+ "AUX|Polarity=Neg|_": 33,
301
+ "AUX|Polarity=Neg|r-aux": 34,
302
+ "AUX|Polarity=Neg|r-fixed": 35,
303
+ "AUX|_": 36,
304
+ "AUX|r-aux": 37,
305
+ "AUX|r-cop": 38,
306
+ "AUX|r-fixed": 39,
307
+ "AUX|root": 40,
308
+ "B-ADJ": 41,
309
+ "B-ADJ.": 42,
310
+ "B-ADP": 43,
311
+ "B-ADP.": 44,
312
+ "B-ADV": 45,
313
+ "B-ADV.": 46,
314
+ "B-AUX": 47,
315
+ "B-AUX.": 48,
316
+ "B-CCONJ": 49,
317
+ "B-CCONJ.": 50,
318
+ "B-DET": 51,
319
+ "B-DET.": 52,
320
+ "B-INTJ": 53,
321
+ "B-INTJ.": 54,
322
+ "B-NOUN": 55,
323
+ "B-NOUN.": 56,
324
+ "B-NUM": 57,
325
+ "B-NUM.": 58,
326
+ "B-PART": 59,
327
+ "B-PART.": 60,
328
+ "B-PRON": 61,
329
+ "B-PRON.": 62,
330
+ "B-PROPN": 63,
331
+ "B-PROPN.": 64,
332
+ "B-PUNCT": 65,
333
+ "B-PUNCT.": 66,
334
+ "B-SCONJ": 67,
335
+ "B-SCONJ.": 68,
336
+ "B-SYM": 69,
337
+ "B-SYM.": 70,
338
+ "B-VERB": 71,
339
+ "B-VERB.": 72,
340
+ "B-X": 73,
341
+ "B-X.": 74,
342
+ "CCONJ": 75,
343
+ "CCONJ.": 76,
344
+ "CCONJ|_": 77,
345
+ "CCONJ|l-cc": 78,
346
+ "CCONJ|r-cc": 79,
347
+ "DET": 80,
348
+ "DET.": 81,
349
+ "DET|_": 82,
350
+ "DET|l-det": 83,
351
+ "I-ADJ": 84,
352
+ "I-ADJ.": 85,
353
+ "I-ADP": 86,
354
+ "I-ADP.": 87,
355
+ "I-ADV": 88,
356
+ "I-ADV.": 89,
357
+ "I-AUX": 90,
358
+ "I-AUX.": 91,
359
+ "I-CCONJ": 92,
360
+ "I-CCONJ.": 93,
361
+ "I-DET": 94,
362
+ "I-DET.": 95,
363
+ "I-INTJ": 96,
364
+ "I-INTJ.": 97,
365
+ "I-NOUN": 98,
366
+ "I-NOUN.": 99,
367
+ "I-NUM": 100,
368
+ "I-NUM.": 101,
369
+ "I-PART": 102,
370
+ "I-PART.": 103,
371
+ "I-PRON": 104,
372
+ "I-PRON.": 105,
373
+ "I-PROPN": 106,
374
+ "I-PROPN.": 107,
375
+ "I-PUNCT": 108,
376
+ "I-PUNCT.": 109,
377
+ "I-SCONJ": 110,
378
+ "I-SCONJ.": 111,
379
+ "I-SYM": 112,
380
+ "I-SYM.": 113,
381
+ "I-VERB": 114,
382
+ "I-VERB.": 115,
383
+ "I-X": 116,
384
+ "I-X.": 117,
385
+ "INTJ": 118,
386
+ "INTJ.": 119,
387
+ "INTJ|_": 120,
388
+ "INTJ|l-discourse": 121,
389
+ "INTJ|r-discourse": 122,
390
+ "INTJ|root": 123,
391
+ "NOUN": 124,
392
+ "NOUN.": 125,
393
+ "NOUN|Polarity=Neg|_": 126,
394
+ "NOUN|Polarity=Neg|l-obl": 127,
395
+ "NOUN|Polarity=Neg|root": 128,
396
+ "NOUN|_": 129,
397
+ "NOUN|l-acl": 130,
398
+ "NOUN|l-advcl": 131,
399
+ "NOUN|l-ccomp": 132,
400
+ "NOUN|l-compound": 133,
401
+ "NOUN|l-csubj": 134,
402
+ "NOUN|l-csubj:outer": 135,
403
+ "NOUN|l-nmod": 136,
404
+ "NOUN|l-nsubj": 137,
405
+ "NOUN|l-nsubj:outer": 138,
406
+ "NOUN|l-obj": 139,
407
+ "NOUN|l-obl": 140,
408
+ "NOUN|r-compound": 141,
409
+ "NOUN|r-nmod": 142,
410
+ "NOUN|r-nsubj": 143,
411
+ "NOUN|root": 144,
412
+ "NUM": 145,
413
+ "NUM.": 146,
414
+ "NUM|_": 147,
415
+ "NUM|l-advcl": 148,
416
+ "NUM|l-compound": 149,
417
+ "NUM|l-nmod": 150,
418
+ "NUM|l-nsubj": 151,
419
+ "NUM|l-nsubj:outer": 152,
420
+ "NUM|l-nummod": 153,
421
+ "NUM|l-obj": 154,
422
+ "NUM|l-obl": 155,
423
+ "NUM|r-compound": 156,
424
+ "NUM|root": 157,
425
+ "PART": 158,
426
+ "PART.": 159,
427
+ "PART|_": 160,
428
+ "PART|l-mark": 161,
429
+ "PART|r-mark": 162,
430
+ "PRON": 163,
431
+ "PRON.": 164,
432
+ "PRON|_": 165,
433
+ "PRON|l-acl": 166,
434
+ "PRON|l-advcl": 167,
435
+ "PRON|l-nmod": 168,
436
+ "PRON|l-nsubj": 169,
437
+ "PRON|l-nsubj:outer": 170,
438
+ "PRON|l-obj": 171,
439
+ "PRON|l-obl": 172,
440
+ "PRON|root": 173,
441
+ "PROPN": 174,
442
+ "PROPN.": 175,
443
+ "PROPN|_": 176,
444
+ "PROPN|l-acl": 177,
445
+ "PROPN|l-advcl": 178,
446
+ "PROPN|l-compound": 179,
447
+ "PROPN|l-nmod": 180,
448
+ "PROPN|l-nsubj": 181,
449
+ "PROPN|l-nsubj:outer": 182,
450
+ "PROPN|l-obj": 183,
451
+ "PROPN|l-obl": 184,
452
+ "PROPN|r-compound": 185,
453
+ "PROPN|r-nmod": 186,
454
+ "PROPN|root": 187,
455
+ "PUNCT": 188,
456
+ "PUNCT.": 189,
457
+ "PUNCT|_": 190,
458
+ "PUNCT|l-punct": 191,
459
+ "PUNCT|r-punct": 192,
460
+ "SCONJ": 193,
461
+ "SCONJ.": 194,
462
+ "SCONJ|_": 195,
463
+ "SCONJ|l-dep": 196,
464
+ "SCONJ|r-fixed": 197,
465
+ "SCONJ|r-mark": 198,
466
+ "SYM": 199,
467
+ "SYM.": 200,
468
+ "SYM|_": 201,
469
+ "SYM|l-compound": 202,
470
+ "SYM|l-dep": 203,
471
+ "SYM|l-nmod": 204,
472
+ "SYM|l-obl": 205,
473
+ "SYM|r-compound": 206,
474
+ "SYM|r-dep": 207,
475
+ "VERB": 208,
476
+ "VERB.": 209,
477
+ "VERB|_": 210,
478
+ "VERB|l-acl": 211,
479
+ "VERB|l-advcl": 212,
480
+ "VERB|l-ccomp": 213,
481
+ "VERB|l-compound": 214,
482
+ "VERB|l-csubj": 215,
483
+ "VERB|l-csubj:outer": 216,
484
+ "VERB|l-nmod": 217,
485
+ "VERB|l-obj": 218,
486
+ "VERB|l-obl": 219,
487
+ "VERB|r-acl": 220,
488
+ "VERB|r-advcl": 221,
489
+ "VERB|r-compound": 222,
490
+ "VERB|root": 223,
491
+ "X": 224,
492
+ "X.": 225,
493
+ "X|_": 226,
494
+ "X|l-nmod": 227,
495
+ "X|r-dep": 228
496
+ },
497
+ "layer_norm_eps": 1e-05,
498
+ "local_attention": 128,
499
+ "local_rope_theta": 10000.0,
500
+ "max_position_embeddings": 8192,
501
+ "mlp_bias": false,
502
+ "mlp_dropout": 0.0,
503
+ "model_type": "modernbert",
504
+ "norm_bias": false,
505
+ "norm_eps": 1e-05,
506
+ "num_attention_heads": 16,
507
+ "num_hidden_layers": 28,
508
+ "pad_token_id": 0,
509
+ "position_embedding_type": "absolute",
510
+ "reference_compile": true,
511
+ "repad_logits_with_grad": false,
512
+ "sep_token_id": 3,
513
+ "sparse_pred_ignore_index": -100,
514
+ "sparse_prediction": false,
515
+ "tokenizer_class": "BertJapaneseTokenizer",
516
+ "torch_dtype": "float32",
517
+ "transformers_version": "4.48.3",
518
+ "vocab_size": 50368
519
+ }
maker.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/python3
2
+ src="makiart/jp-ModernBert-large-preview"
3
+ tgt="KoichiYasuoka/modernbert-large-japanese-unidic-ud-embeds"
4
+ url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW"
5
+ import os
6
+ d=os.path.basename(url)
7
+ os.system("test -d "+d+" || git clone --depth=1 "+url)
8
+ os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
9
+ class UDEmbedsDataset(object):
10
+ def __init__(self,conllu,tokenizer,embeddings=None):
11
+ self.conllu=open(conllu,"r",encoding="utf-8")
12
+ self.tokenizer=tokenizer
13
+ self.embeddings=embeddings
14
+ self.seeks=[0]
15
+ label=set(["SYM","SYM.","SYM|_"])
16
+ dep=set()
17
+ s=self.conllu.readline()
18
+ while s!="":
19
+ if s=="\n":
20
+ self.seeks.append(self.conllu.tell())
21
+ else:
22
+ w=s.split("\t")
23
+ if len(w)==10:
24
+ if w[0].isdecimal():
25
+ p=w[3]
26
+ q="" if w[5]=="_" else "|"+w[5]
27
+ d=("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7]
28
+ for k in [p,p+".","B-"+p,"B-"+p+".","I-"+p,"I-"+p+".",p+q+"|_",p+q+d]:
29
+ label.add(k)
30
+ s=self.conllu.readline()
31
+ self.label2id={l:i for i,l in enumerate(sorted(label))}
32
+ def __call__(*args):
33
+ lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
34
+ for t in args:
35
+ t.label2id=lid
36
+ return lid
37
+ def __del__(self):
38
+ self.conllu.close()
39
+ __len__=lambda self:(len(self.seeks)-1)*2
40
+ def __getitem__(self,i):
41
+ self.conllu.seek(self.seeks[int(i/2)])
42
+ z,c,t,s=i%2,[],[""],False
43
+ while t[0]!="\n":
44
+ t=self.conllu.readline().split("\t")
45
+ if len(t)==10 and t[0].isdecimal():
46
+ if s:
47
+ t[1]=" "+t[1]
48
+ c.append(t)
49
+ s=t[9].find("SpaceAfter=No")<0
50
+ x=[True if t[6]=="0" or int(t[6])>j or sum([1 if int(c[i][6])==j+1 else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)]
51
+ v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
52
+ if z==0:
53
+ ids,upos=[self.tokenizer.cls_token_id],["SYM."]
54
+ for i,(j,k) in enumerate(zip(v,c)):
55
+ if j==[]:
56
+ j=[self.tokenizer.unk_token_id]
57
+ p=k[3] if x[i] else k[3]+"."
58
+ ids+=j
59
+ upos+=[p] if len(j)==1 else ["B-"+p]+["I-"+p]*(len(j)-1)
60
+ ids.append(self.tokenizer.sep_token_id)
61
+ upos.append("SYM.")
62
+ emb=self.embeddings
63
+ else:
64
+ import torch
65
+ if len(x)<127:
66
+ x=[True]*len(x)
67
+ else:
68
+ w=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1
69
+ for i in range(len(x)):
70
+ if x[i]==False and w+len(x)-i<8192:
71
+ x[i]=True
72
+ w+=len(x)-i+1
73
+ p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for i,t in enumerate(c)]
74
+ d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])<int(t[6]) else "r-"+t[7] for t in c]
75
+ ids,upos=[-1],["SYM|_"]
76
+ for i in range(len(x)):
77
+ if x[i]:
78
+ ids.append(i)
79
+ upos.append(p[i]+"|"+d[i] if c[i][6]=="0" else p[i]+"|_")
80
+ for j in range(i+1,len(x)):
81
+ ids.append(j)
82
+ upos.append(p[j]+"|"+d[j] if int(c[j][6])==i+1 else p[i]+"|"+d[i] if int(c[i][6])==j+1 else p[j]+"|_")
83
+ ids.append(-1)
84
+ upos.append("SYM|_")
85
+ with torch.no_grad():
86
+ m=[]
87
+ for j in v:
88
+ if j==[]:
89
+ j=[self.tokenizer.unk_token_id]
90
+ m.append(self.embeddings[j,:].sum(axis=0))
91
+ m.append(self.embeddings[self.tokenizer.sep_token_id,:])
92
+ emb=torch.stack(m)
93
+ return{"inputs_embeds":emb[ids[:8192],:],"labels":[self.label2id[p] for p in upos[:8192]]}
94
+ from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer
95
+ from tokenizers.pre_tokenizers import Sequence,Split
96
+ from tokenizers import Regex
97
+ tkz=AutoTokenizer.from_pretrained(src)
98
+ trainDS=UDEmbedsDataset("train.conllu",tkz)
99
+ devDS=UDEmbedsDataset("dev.conllu",tkz)
100
+ testDS=UDEmbedsDataset("test.conllu",tkz)
101
+ lid=trainDS(devDS,testDS)
102
+ cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
103
+ mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True)
104
+ trainDS.embeddings=mdl.get_input_embeddings().weight
105
+ arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
106
+ trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS)
107
+ trn.train()
108
+ trn.save_model(tgt)
109
+ tkz.save_pretrained(tgt)
mecab.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import BertTokenizerFast
2
+ from transformers.models.bert_japanese.tokenization_bert_japanese import MecabTokenizer
3
+
4
+ class MecabPreTokenizer(MecabTokenizer):
5
+ def mecab_split(self,i,normalized_string):
6
+ t=str(normalized_string)
7
+ e=0
8
+ z=[]
9
+ for c in self.tokenize(t):
10
+ s=t.find(c,e)
11
+ e=e if s<0 else s+len(c)
12
+ z.append((0,0) if s<0 else (s,e))
13
+ return [normalized_string[s:e] for s,e in z if e>0]
14
+ def pre_tokenize(self,pretok):
15
+ pretok.split(self.mecab_split)
16
+
17
+ class BertMecabTokenizerFast(BertTokenizerFast):
18
+ def __init__(self,vocab_file,do_lower_case=False,tokenize_chinese_chars=False,**kwargs):
19
+ from tokenizers import pre_tokenizers,normalizers
20
+ super().__init__(vocab_file=vocab_file,do_lower_case=do_lower_case,tokenize_chinese_chars=tokenize_chinese_chars,**kwargs)
21
+ d=kwargs["mecab_kwargs"] if "mecab_kwargs" in kwargs else {"mecab_dic":"ipadic"}
22
+ self._tokenizer.normalizer=normalizers.Sequence([normalizers.Nmt(),normalizers.NFKC()])
23
+ self.custom_pre_tokenizer=pre_tokenizers.Sequence([pre_tokenizers.PreTokenizer.custom(MecabPreTokenizer(**d)),pre_tokenizers.BertPreTokenizer()])
24
+ self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
25
+ def save_pretrained(self,save_directory,**kwargs):
26
+ import os
27
+ import shutil
28
+ from tokenizers.pre_tokenizers import Metaspace
29
+ self._auto_map={"AutoTokenizer":[None,"mecab.BertMecabTokenizerFast"]}
30
+ self._tokenizer.pre_tokenizer=Metaspace()
31
+ super().save_pretrained(save_directory,**kwargs)
32
+ self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
33
+ shutil.copy(os.path.abspath(__file__),os.path.join(save_directory,"mecab.py"))
34
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4cb42c00c9c448ab17ad20ae6ea556bf0bb52df749b8db32daa3d795c3ae5fe
3
+ size 1584321282
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "auto_map": {
45
+ "AutoTokenizer": ["BertJapaneseTokenizer","mecab.BertMecabTokenizerFast"]
46
+ },
47
+ "clean_up_tokenization_spaces": true,
48
+ "cls_token": "[CLS]",
49
+ "do_lower_case": false,
50
+ "do_subword_tokenize": true,
51
+ "do_word_tokenize": true,
52
+ "extra_special_tokens": {},
53
+ "jumanpp_kwargs": null,
54
+ "mask_token": "[MASK]",
55
+ "mecab_kwargs": {
56
+ "mecab_dic": "unidic_lite"
57
+ },
58
+ "model_input_names": [
59
+ "input_ids",
60
+ "attention_mask"
61
+ ],
62
+ "model_max_length": 1000000000000000019884624838656,
63
+ "never_split": null,
64
+ "pad_token": "[PAD]",
65
+ "sep_token": "[SEP]",
66
+ "subword_tokenizer_type": "wordpiece",
67
+ "sudachi_kwargs": null,
68
+ "tokenizer_class": "BertJapaneseTokenizer",
69
+ "unk_token": "[UNK]",
70
+ "word_tokenizer_type": "mecab"
71
+ }
ud.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy
2
+ from transformers import TokenClassificationPipeline
3
+
4
+ class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
5
+ def __init__(self,**kwargs):
6
+ super().__init__(**kwargs)
7
+ x=self.model.config.label2id
8
+ y=[k for k in x if k.find("|")<0 and not k.startswith("I-")]
9
+ self.transition=numpy.full((len(x),len(x)),-numpy.inf)
10
+ for k,v in x.items():
11
+ if k.find("|")<0:
12
+ for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
13
+ self.transition[v,x[j]]=0
14
+ def check_model_type(self,supported_models):
15
+ pass
16
+ def postprocess(self,model_outputs,**kwargs):
17
+ if "logits" not in model_outputs:
18
+ return self.postprocess(model_outputs[0],**kwargs)
19
+ return self.bellman_ford_token_classification(model_outputs,**kwargs)
20
+ def bellman_ford_token_classification(self,model_outputs,**kwargs):
21
+ m=model_outputs["logits"][0].numpy()
22
+ e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
23
+ z=e/e.sum(axis=-1,keepdims=True)
24
+ for i in range(m.shape[0]-1,0,-1):
25
+ m[i-1]+=numpy.max(m[i]+self.transition,axis=1)
26
+ k=[numpy.argmax(m[0]+self.transition[0])]
27
+ for i in range(1,m.shape[0]):
28
+ k.append(numpy.argmax(m[i]+self.transition[k[-1]]))
29
+ w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
30
+ if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
31
+ for i,t in reversed(list(enumerate(w))):
32
+ p=t.pop("entity")
33
+ if p.startswith("I-"):
34
+ w[i-1]["score"]=min(w[i-1]["score"],t["score"])
35
+ w[i-1]["end"]=w.pop(i)["end"]
36
+ elif p.startswith("B-"):
37
+ t["entity_group"]=p[2:]
38
+ else:
39
+ t["entity_group"]=p
40
+ for t in w:
41
+ t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
42
+ return w
43
+
44
+ class UniversalDependenciesPipeline(BellmanFordTokenClassificationPipeline):
45
+ def __init__(self,**kwargs):
46
+ kwargs["aggregation_strategy"]="simple"
47
+ super().__init__(**kwargs)
48
+ x=self.model.config.label2id
49
+ self.root=numpy.full((len(x)),-numpy.inf)
50
+ self.left_arc=numpy.full((len(x)),-numpy.inf)
51
+ self.right_arc=numpy.full((len(x)),-numpy.inf)
52
+ for k,v in x.items():
53
+ if k.endswith("|root"):
54
+ self.root[v]=0
55
+ elif k.find("|l-")>0:
56
+ self.left_arc[v]=0
57
+ elif k.find("|r-")>0:
58
+ self.right_arc[v]=0
59
+ def postprocess(self,model_outputs,**kwargs):
60
+ import torch
61
+ kwargs["aggregation_strategy"]="simple"
62
+ if "logits" not in model_outputs:
63
+ return self.postprocess(model_outputs[0],**kwargs)
64
+ w=self.bellman_ford_token_classification(model_outputs,**kwargs)
65
+ off=[(t["start"],t["end"]) for t in w]
66
+ for i,(s,e) in reversed(list(enumerate(off))):
67
+ if s<e:
68
+ d=w[i]["text"]
69
+ j=len(d)-len(d.lstrip())
70
+ if j>0:
71
+ d=d.lstrip()
72
+ off[i]=(off[i][0]+j,off[i][1])
73
+ j=len(d)-len(d.rstrip())
74
+ if j>0:
75
+ d=d.rstrip()
76
+ off[i]=(off[i][0],off[i][1]-j)
77
+ if d.strip()=="":
78
+ off.pop(i)
79
+ w.pop(i)
80
+ v=self.tokenizer([t["text"] for t in w],add_special_tokens=False)
81
+ x=[not t["entity_group"].endswith(".") for t in w]
82
+ if len(x)<127:
83
+ x=[True]*len(x)
84
+ else:
85
+ k=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1
86
+ for i in numpy.argsort(numpy.array([t["score"] for t in w])):
87
+ if x[i]==False and k+len(x)-i<8192:
88
+ x[i]=True
89
+ k+=len(x)-i+1
90
+ ids=[-1]
91
+ for i in range(len(x)):
92
+ if x[i]:
93
+ ids.append(i)
94
+ for j in range(i+1,len(x)):
95
+ ids.append(j)
96
+ ids.append(-1)
97
+ with torch.no_grad():
98
+ e=self.model.get_input_embeddings().weight
99
+ m=[]
100
+ for j in v["input_ids"]:
101
+ if j==[]:
102
+ j=[self.tokenizer.unk_token_id]
103
+ m.append(e[j,:].sum(axis=0))
104
+ m.append(e[self.tokenizer.sep_token_id,:])
105
+ m=torch.stack(m).to(self.device)
106
+ e=self.model(inputs_embeds=torch.unsqueeze(m[ids,:],0))
107
+ m=e.logits[0].cpu().numpy()
108
+ e=numpy.full((len(x),len(x),m.shape[-1]),m.min())
109
+ k=1
110
+ for i in range(len(x)):
111
+ if x[i]:
112
+ e[i,i]=m[k]+self.root
113
+ k+=1
114
+ for j in range(1,len(x)-i):
115
+ e[i+j,i]=m[k]+self.left_arc
116
+ e[i,i+j]=m[k]+self.right_arc
117
+ k+=1
118
+ k+=1
119
+ m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
120
+ h=self.chu_liu_edmonds(m)
121
+ z=[i for i,j in enumerate(h) if i==j]
122
+ if len(z)>1:
123
+ k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
124
+ m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
125
+ h=self.chu_liu_edmonds(m)
126
+ q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
127
+ t=model_outputs["sentence"].replace("\n"," ")
128
+ u="# text = "+t+"\n"
129
+ for i,(s,e) in enumerate(off):
130
+ u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(off) and e<off[i+1][0] else "SpaceAfter=No"])+"\n"
131
+ return u+"\n"
132
+ def chu_liu_edmonds(self,matrix):
133
+ h=numpy.argmax(matrix,axis=0)
134
+ x=[-1 if i==j else j for i,j in enumerate(h)]
135
+ for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
136
+ y=[]
137
+ while x!=y:
138
+ y=list(x)
139
+ for i,j in enumerate(x):
140
+ x[i]=b(x,i,j)
141
+ if max(x)<0:
142
+ return h
143
+ y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
144
+ z=matrix-numpy.max(matrix,axis=0)
145
+ m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
146
+ k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
147
+ h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
148
+ i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
149
+ h[i]=x[k[-1]] if k[-1]<len(x) else i
150
+ return h
vocab.txt ADDED
The diff for this file is too large to render. See raw diff