|
|
|
|
|
import os,json |
|
os.system(""" |
|
if test -d transformers |
|
then : |
|
else git clone --depth=1 https://github.com/huggingface/transformers transformers-all |
|
ln -s transformers-all/src/transformers transformers |
|
fi |
|
test -d ModernBERT-large || git clone --depth=1 https://huggingface.co./answerdotai/ModernBERT-large |
|
test -f ModernBERT-large/configuration_modernbert.py || sed 's/^from \\.\\.\\./from transformers./' transformers/models/modernbert/configuration_modernbert.py > ModernBERT-large/configuration_modernbert.py |
|
test -f ModernBERT-large/modeling_modernbert.py || sed -e 's/^from \\.\\.\\./from transformers./' -e 's/^from .* import is_triton_available/import importlib\\nis_triton_available = lambda: importlib.util.find_spec("triton") is not None/' transformers/models/modernbert/modeling_modernbert.py > ModernBERT-large/modeling_modernbert.py |
|
""") |
|
with open("ModernBERT-large/config.json","r",encoding="utf-8") as r: |
|
d=json.load(r) |
|
if not "auto_map" in d: |
|
d["auto_map"]={ |
|
"AutoConfig":"configuration_modernbert.ModernBertConfig", |
|
"AutoModel":"modeling_modernbert.ModernBertModel", |
|
"AutoModelForMaskedLM":"modeling_modernbert.ModernBertForMaskedLM", |
|
"AutoModelForSequenceClassification":"modeling_modernbert.ModernBertForSequenceClassification", |
|
"AutoModelForTokenClassification":"modeling_modernbert.ModernBertForTokenClassification" |
|
} |
|
with open("ModernBERT-large/config.json","w",encoding="utf-8") as w: |
|
json.dump(d,w,indent=2) |
|
if not os.path.isfile("train.txt"): |
|
import datasets |
|
aug=lambda x:(x.replace("侠","俠").replace("倶","俱").replace("洗","冼").replace("剥","剝").replace("即","卽").replace("呑","吞").replace("呉","吳").replace("填","塡").replace("巣","巢").replace("徴","徵").replace("徳","德").replace("掲","揭").replace("撃","擊").replace("教","敎").replace("晩","晚").replace("横","橫").replace("歩","步").replace("歴","歷").replace("毎","每").replace("冷","泠").replace("渉","涉").replace("涙","淚").replace("清","淸").replace("渇","渴").replace("温","溫").replace("状","狀").replace("産","產").replace("痩","瘦").replace("禰","祢").replace("箪","簞").replace("緑","綠").replace("緒","緖").replace("縁","緣").replace("繋","繫").replace("莱","萊").replace("薫","薰").replace("虚","虛").replace("蝉","蟬").replace("説","說").replace("躯","軀").replace("郎","郞").replace("醤","醬").replace("録","錄").replace("錬","鍊").replace("間","閒").replace("頬","頰").replace("顛","顚").replace("鴎","鷗").replace("麺","麵").replace("黄","黃").replace("黒","黑").replace("叱","𠮟")) |
|
with open("train.txt","w",encoding="utf-8") as w: |
|
d,u,v=datasets.load_dataset("globis-university/aozorabunko-clean"),"","" |
|
for t in d["train"]: |
|
for s in t["text"].replace("。","。\n").replace("\u3000"," ").split("\n"): |
|
r=aug(s) |
|
if r!=s: |
|
if len(r)+len(v)<10000: |
|
v+=r |
|
else: |
|
print(v,file=w) |
|
v=r |
|
if len(s)+len(u)<10000: |
|
u+=s |
|
else: |
|
print(u,file=w) |
|
u=s |
|
print(u,v,file=w) |
|
os.system("test -s token.txt || fugashi -Owakati < train.txt > token.txt") |
|
|
|
from transformers import DebertaV2TokenizerFast |
|
if not os.path.isfile("tokenizer.json"): |
|
import urllib.request |
|
from tokenizers import Tokenizer,models,pre_tokenizers,normalizers,processors,decoders,trainers |
|
with urllib.request.urlopen("https://www.unicode.org/wg2/iso10646/edition6/data/JapaneseCoreKanji.txt") as r: |
|
joyo=[chr(int(t,16)) for t in r.read().decode().strip().split("\n") if not t.startswith("#")] |
|
spt=Tokenizer(models.Unigram()) |
|
spt.pre_tokenizer=pre_tokenizers.Sequence([pre_tokenizers.Whitespace(),pre_tokenizers.Punctuation()]) |
|
spt.normalizer=normalizers.Sequence([normalizers.Nmt(),normalizers.NFKC()]) |
|
spt.post_processor=processors.TemplateProcessing(single="[CLS] $A [SEP]",pair="[CLS] $A [SEP] $B:1 [SEP]:1",special_tokens=[("[CLS]",0),("[SEP]",2)]) |
|
spt.decoder=decoders.WordPiece(prefix="",cleanup=True) |
|
spt.train(trainer=trainers.UnigramTrainer(vocab_size=65000,max_piece_length=4,initial_alphabet=joyo,special_tokens=["[CLS]","[PAD]","[SEP]","[UNK]","[MASK]"],unk_token="[UNK]",n_sub_iterations=2),files=["token.txt"]) |
|
spt.save("tokenizer.json") |
|
tkz=DebertaV2TokenizerFast(tokenizer_file="tokenizer.json",split_by_punct=True,do_lower_case=False,keep_accents=True,vocab_file="/dev/null") |
|
tkz.save_pretrained("modernbert-large-japanese-aozora") |
|
with open("train.py","w",encoding="utf-8") as w: |
|
print('''#! /usr/bin/env deepspeed |
|
from transformers import DebertaV2TokenizerFast,ModernBertForMaskedLM,AutoConfig,DataCollatorForLanguageModeling,TrainingArguments,Trainer |
|
tkz=DebertaV2TokenizerFast.from_pretrained("modernbert-large-japanese-aozora") |
|
c={"trust_remote_code":True,"vocab_size":len(tkz),"tokenizer_class":type(tkz).__name__} |
|
for k,v in tkz.special_tokens_map.items(): |
|
c[k+"_id"]=tkz.convert_tokens_to_ids(v) |
|
cfg=AutoConfig.from_pretrained("ModernBERT-large",**c) |
|
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,save_safetensors=False) |
|
class ReadLineDS(object): |
|
def __init__(self,file,tokenizer): |
|
self.tokenizer=tokenizer |
|
with open(file,"r",encoding="utf-8") as r: |
|
self.lines=[s.strip() for s in r if s.strip()>""] |
|
__len__=lambda self:len(self.lines) |
|
__getitem__=lambda self,i:self.tokenizer(self.lines[i],truncation=True,add_special_tokens=True,max_length=8190) |
|
trn=Trainer(args=arg,data_collator=DataCollatorForLanguageModeling(tkz),model=ModernBertForMaskedLM(cfg),train_dataset=ReadLineDS("train.txt",tkz)) |
|
trn.train() |
|
trn.save_model("modernbert-large-japanese-aozora")''',file=w) |
|
os.system(""" |
|
chmod 755 train.py |
|
./train.py |
|
cp ModernBERT-large/*.py modernbert-large-japanese-aozora |
|
""") |
|
|