--- language: - "ja" tags: - "japanese" - "masked-lm" - "wikipedia" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # deberta-large-japanese-wikipedia ## Model Description This is a DeBERTa(V2) model pre-trained on Japanese Wikipedia and 青空文庫 texts. NVIDIA A100-SXM4-40GB took 632 hours 19 minutes for training. You can fine-tune `deberta-large-japanese-wikipedia` for downstream tasks, such as [POS-tagging](https://huggingface.co./KoichiYasuoka/deberta-large-japanese-wikipedia-luw-upos), [dependency-parsing](https://huggingface.co./KoichiYasuoka/deberta-large-japanese-wikipedia-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia") ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.