--- language: - "ja" tags: - "japanese" - "wikipedia" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/deberta-large-japanese-wikipedia datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-large-japanese-wikipedia-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on Japanese Wikipedia and 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-large-japanese-wikipedia](https://huggingface.co./KoichiYasuoka/deberta-large-japanese-wikipedia). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-large-japanese-wikipedia-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models