Artificial Kuramoto Oscillatory Neurons (AKOrN) differ from traditional artificial neurons by oscillating, rather than just turning on or off. Each neuron is represented by a rotating vector on a sphere, influenced by its connections to other neurons. This behavior is based on the Kuramoto model, which describes how oscillators (like neurons) tend to synchronize, similar to pendulums swinging in unison.
Key points:
Oscillating Neurons: Each AKOrN’s rotation is influenced by its connections, and they try to synchronize or oppose each other. Synchronization: When neurons synchronize, they "bind," allowing the network to represent complex concepts (e.g., "a blue square toy") by compressing information. Updating Mechanism: Neurons update their rotations based on connected neurons, input stimuli, and their natural frequency, using a Kuramoto update formula. Network Structure: AKOrNs can be used in various network layers, with iterative blocks combining Kuramoto layers and feature extraction modules. Reasoning: This model can perform reasoning tasks, like solving Sudoku puzzles, by adjusting neuron interactions. Advantages: AKOrNs offer robust feature binding, reasoning capabilities, resistance to adversarial data, and well-calibrated uncertainty estimation. In summary, AKOrN's oscillatory neurons and synchronization mechanisms enable the network to learn, reason, and handle complex tasks like image classification and object discovery with enhanced robustness and flexibility.
Understanding and Benchmarking Artificial Intelligence: OpenAI's o3 Is Not AGI
It's an interesting paper that argues "new approaches are required that can reliably solve a wide variety of problems without existing skills." "It is therefore hoped that the benchmark outlined in this article contributes to further exploration of this direction of research and incentivises the development of new AGI approaches that focus on intelligence rather than skills."
🎯Fine-tuning SmolLM2 on a lightweight synthetic reasoning dataset for reasoning-specific tasks. Future updates will focus on lightweight, blazing-fast reasoning models. Until then, check out the blog for fine-tuning details.
FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?
Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.
Today, I'm happy to share the first classifier trained on this data.
🔍 What we've built:
- A lightweight classifier that efficiently removes low-quality content - 90%+ precision demonstrated on Danish & Swedish - Can process the 43M+ documents in Danish FineWeb2 with minimal compute
🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C (data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.
Small Language Models Enthusiasts and GPU Poor oss enjoyers lets connect. Just created an organization which main target is to have fun with smaller models tuneable on consumer range GPUs, feel free to join and lets have some fun, much love ;3