--- tags: - merge - mergekit - lazymergekit - AI-Sweden-Models/tyr - mlabonne/NeuralBeagle14-7B - neph1/bellman-7b-mistral-instruct-v0.2 base_model: - AI-Sweden-Models/tyr - mlabonne/NeuralBeagle14-7B - neph1/bellman-7b-mistral-instruct-v0.2 --- # StarlingBeagle-dare-ties NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [AI-Sweden-Models/tyr](https://huggingface.co./AI-Sweden-Models/tyr) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co./mlabonne/NeuralBeagle14-7B) * [neph1/bellman-7b-mistral-instruct-v0.2](https://huggingface.co./neph1/bellman-7b-mistral-instruct-v0.2) ## 🧩 Configuration ```yaml models: - model: Nexusflow/Starling-LM-7B-beta # No parameters necessary for base model - model: AI-Sweden-Models/tyr parameters: density: 0.53 weight: 0.4 - model: mlabonne/NeuralBeagle14-7B parameters: density: 0.53 weight: 0.3 - model: neph1/bellman-7b-mistral-instruct-v0.2 parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: Nexusflow/Starling-LM-7B-beta parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "knobi3/NeuralPipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```